首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1237篇
  免费   75篇
  国内免费   15篇
测绘学   50篇
大气科学   113篇
地球物理   300篇
地质学   497篇
海洋学   101篇
天文学   122篇
综合类   10篇
自然地理   134篇
  2022年   7篇
  2021年   24篇
  2020年   22篇
  2019年   27篇
  2018年   38篇
  2017年   34篇
  2016年   46篇
  2015年   35篇
  2014年   53篇
  2013年   105篇
  2012年   47篇
  2011年   52篇
  2010年   51篇
  2009年   59篇
  2008年   61篇
  2007年   51篇
  2006年   42篇
  2005年   49篇
  2004年   40篇
  2003年   35篇
  2002年   32篇
  2001年   24篇
  2000年   27篇
  1999年   23篇
  1998年   24篇
  1997年   17篇
  1996年   11篇
  1995年   11篇
  1994年   17篇
  1993年   9篇
  1992年   11篇
  1991年   17篇
  1990年   9篇
  1989年   12篇
  1988年   6篇
  1987年   5篇
  1986年   10篇
  1985年   12篇
  1984年   15篇
  1983年   11篇
  1982年   6篇
  1981年   12篇
  1980年   13篇
  1979年   7篇
  1978年   12篇
  1977年   12篇
  1974年   8篇
  1973年   5篇
  1956年   4篇
  1948年   5篇
排序方式: 共有1327条查询结果,搜索用时 937 毫秒
31.
Summary A garnet peridotite lens from Monte Duria (Adula nappe, Central Alps, Northern Italy) contains porphyroblastic garnet and pargasitic amphibole and reached peak metamorphic conditions of ∼830 C, ∼2.8 GPa. A first stage of near isothermal decompression to pressures <2.0 GPa is characterised by domains where fine grained spinel, clinopyroxene, orthopyroxene and amphibole form. The newly formed amphibole contains elevated levels of fluid mobile elements such as Rb, Ba and Pb indicating that recrystallization was assisted by infiltration of a crustal-derived fluid. Further decompression and cooling to ∼720 °C, 0.7–1.0 GPa associated with limited fluid influx is documented by the formation of orthopyroxene-spinel-amphibole symplectites around garnet. Zircon separated from this garnet peridotite exhibits two distinct zones. Domain 1 displays polygonal oscillatory zoning and high trace element contents. It contains clinopyroxene and amphibole inclusions with the same composition as the same minerals formed during the spinel peridotite equilibration, indicating that this domain formed under sub-solidus conditions during decompression and influx of crustal fluids. Domain 2 has no zoning and much lower trace element contents. It replaces domain 1 and is likely related to zircon recrystallization during the formation of the symplectites. SHRIMP dating of the two domains yielded ages of 34.2 ± 0.2 and 32.9 ± 0.3 Ma, respectively, indicating fast exhumation of the peridotite within the spinel stability field. We suggest that the Duria garnet peridotite originates from the mantle wedge above the tertiary subduction of the European continental margin and that it was assembled to the country rock gneisses between 34 and 33 Ma. Third author was Deceased  相似文献   
32.
High-resolution space-borne remote sensing data are investigated for their potential to extract relevant parameters for a vulnerability analysis of buildings in European countries. For an evaluation of large earthquake scenarios, the number of parameters in models for vulnerability is reduced to a minimum of relevant information such as the type of building (age, material, number of storeys) and the geological and spatial context. Building-related parameters can be derived from remote sensing data either directly (e.g. height) or indirectly based on the recognition of the urban structure type in which the buildings are located. With the potential of a fully- or semi-automatic inventory of the buildings and their parameters, high-resolution satellite data and techniques for their processing are a useful supporting tool for the assessment of vulnerability.  相似文献   
33.
The Ernest Henry Cu–Au deposit was formed within a zoned, post-peak metamorphic hydrothermal system that overprinted metamorphosed dacite, andesite and diorite (ca 1740–1660 Ma). The Ernest Henry hydrothermal system was formed by two cycles of sodic and potassic alteration where biotite–magnetite alteration produced in the first cycle formed ca 1514±24 Ma, whereas paragenetically later Na–Ca veining formed ca 1529 +11/−8 Ma. These new U–Pbtitanite age dates support textural evidence for incursion of hydrothermal fluids after the metamorphic peak, and overlap with earlier estimates for the timing of Cu–Au mineralization (ca 1540–1500 Ma). A distal to proximal potassic alteration zone correlates with a large (up to 1.5 km) K–Fe–Mn–Ba enriched alteration zone that overprints earlier sodic alteration. Mass balance analysis indicates that K–Fe–Mn–Ba alteration—largely produced during pre-ore biotite- and magnetite-rich alteration—is associated with K–Rb–Cl–Ba–Fe–Mn and As enrichment and Na, Ca and Sr depletion. The aforementioned chemical exchange almost precisely counterbalances the mass changes associated with regional Na–Ca alteration. This initial transition from sodic to potassic alteration may have been formed during the evolution of a single fluid that evolved via alkali exchange during progressive fluid-rock interaction. Cu–Au ore, dominated by co-precipitated magnetite, minor specular hematite, and chalcopyrite as breccia matrix, forms a pipe-like body at the core of a proximal alteration zone dominated by K-feldspar alteration. Both the core and K-feldspar alteration overprint Na–Ca alteration and biotite–magnetite (K–Fe) alteration. Ore was associated with the concentration of a diverse range of elements (e.g. Cu, Au, Fe, Mo, U, Sb, W, Sn, Bi, Ag, F, REE, K, S, As, Co, Ba and Ca). Mineralization also involved the deposition of significant barite, K(–Ba)–feldspar, calcite, fluorite and complexly zoned pyrite. The complexly zoned pyrite and variable K–(Ba)–feldspar versus barite associations are interpreted to indicate fluctuating sulphur and/or barium supply. Together with the alteration zonation geochemistry and overprinting criteria, these data are interpreted to indicate that Cu–Au mineralization occurred as a result of fluid mixing during dilation and brecciation, in the location of the most intense initial potassic alteration. A link between early alteration (Na–Ca and K–Fe) and the later K-feldspathization and the Cu–Au ore is possible. However, the ore-related enrichments in particular elements (especially Ba, Mn, As, Mo, Ag, U, Sb and Bi) are so extreme compared with earlier alteration that another fluid, possibly magmatic in origin, contributed the diverse element suite geochemically independently of the earlier stages. Structural focussing of successive stages produced the distinctive alteration zoning, providing a basis both for exploration for similar deposits, and for an understanding of ore genesis.  相似文献   
34.
Although cliffs form approximately 75% of the world's coastline, the understanding of the processes through which they evolve remains limited because of a lack of quantitative data on the morphological changes they undergo. In this paper the combination of terrestrial time-of-flight laser scanning with high-resolution digital photogrammetry is examined to generate high-quality data-sets pertaining to the geomorphic processes governing cliff development. The study was undertaken on a section of hard rock cliffs in North Yorkshire, UK, which has been monitored over a 12-month period. High-density, laser-scanned point clouds have been used to produce an accurate representation of these complex surfaces, free from the optical variations that degrade photographic data. These data-sets have been combined with high-resolution photographic monitoring, resampled with the fixed accuracies of the terrestrial laser survey, to generate a new approach to recording the volumetric changes in complex coastal cliffs. This has led to significant improvements in the understanding of the activity patterns of coastal cliffs.  相似文献   
35.
Abstract The initial volcanic phase of Cretaceous island arc strata in central Puerto Rico, at the eastern end of the extinct Greater Antilles Arc, comprises a 6‐km thick pile of lava and volcanic breccia (Río Majada Group). Preserved within the sequence is a conspicuous shift in absolute abundances of the more incompatible elements, including Th, Nb, and the light rare earth elements (LREE: La, Ce, Pr and Nd). The compositional shift is marked by a decrease in La/Sm from averages of 2.11 in the lowest third of the pile (Formation A) to 1.48 at the top (Formation C), and by a distinctive flattening of LREE segments of chondrite‐normalized REE patterns. i87Sr/86Sr and ?Nd average about 0.7035 and 8.2, respectively, in early Formation A basalts. These ranges normally overlap samples from later Formations B and C. Isotope compositions of the latter group are more variable, however, and several samples are considerably more radiogenic than Formation A basalts, such that i87Sr/86Sr averages almost 0.7042 while ?Nd‐values decrease to 7.5 in Formation B and C basalts. Theoretical models of non‐modal melting processes in both amphibole peridotite and spinel lherzolite sources provide insight into the origin of depleted Th, Nb, and LREE abundances in Puerto Rican basalts. Low Nb concentrations less than normal mid‐oceanic ridge basalts in Formation A basalts indicate the wedge was slightly depleted by low‐volume decompression fusion due to induced convection in the back‐arc region prior to entry of the source into the arc melting zone. However, depleted patterns in Formation C basalts cannot be generated by relatively greater degrees of decompression fusion in the back‐arc, because addition of the La‐enriched slab‐derived component to more depleted source material invariably produces elevated rather than decreased La/Sm. Refluxing of Formation A harzburgitic residua is similarly precluded. In contrast, the observed patterns are readily reproduced by multistage melting models involving hybridized sources containing normal Formation A lherzolite source material blended with recycled, unrefluxed harzburgite residua. Successful models require hybrid sources containing large volumes of recycled harzburgite (up to 50%) during generation of Formation C basalts. Slightly elevated radiometric Sr and Nd isotopes in a few flows from Formation C are attributed to partial refluxing of the hybrid sources within the wedge.  相似文献   
36.
This study examines skateboarding as a transgressive activity in different inner Newcastle public spaces, highlighting the way certain places are constructed, and the values and meanings attached to them. Skateboarding has been sanctioned in some places, but is considered to be inappropriate in others, resulting in the implementation of skating restrictions in specific areas. Transgressive conduct is different from the norm and appears to be ‘out of place’. However, labels of ‘in’ and ‘out’ of place are too simplistic, because transgression is more nuanced and can simultaneously operate at multiple scales. Some skateboarding activities and locations are seen as more legitimate than others, and so a skater can be both ‘in place’ and ‘out of place’ at the same time. Problems and inconsistencies in the regulation of public space are revealed, because although skateboarding may be illegal in some places, the regulations are blunted by limited enforcement, justified by distinctions between ‘good’ and ‘bad’ skateboarding.  相似文献   
37.
This paper reports the application of a two‐dimensional hydraulic model to a braided reach of the Avoca River, New Zealand. Field measurements of water surface elevation, depth and velocity obtained at low flow were used to validate the model and to optimize the parameterization of bed friction. The main systematic trends in the measured flow variables are reproduced by the model. However, field data are characterized by greater spatial variability than model output reflecting differences in the scale of processes measured in the field and represented by the model. Additional model runs were conducted to simulate flow patterns within the study reach at five higher discharges. The purpose of these simulations was to evaluate the potential for using two‐dimensional hydraulic models to quantify the reach‐scale hydraulic characteristics of braided rivers and their dependence on discharge. Changes in flow depth and velocity with increasing discharge exhibit trends that are consistent with the results of previous field investigations, although the tendency for the wetted area of the braidplain within particular depth and velocity categories to remain fixed as discharge rises, as has been noted for several braided rivers in New Zealand, was not observed. Modelled shear stress frequency distributions fit gamma functions that incorporate a distribution shape parameter, the value of which follows clear systematic trends with rising discharge. These results illustrate both the problems of, and potential for, using two‐dimensional hydraulic models in braided river applications. This leads to something of a paradox in that while such models provide a means of generating hydraulic information that would be difficult to obtain in the field at an equivalent spatial resolution, they are, due to the problems inherent to data collection, difficult to validate conclusively. Despite this limitation, the application of spatially distributed models to investigate relationships between discharge and reach‐scale form and process variables appears to have considerable potential. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
38.
Jrg Hermann 《Lithos》2003,70(3-4):163-182
The peak metamorphic conditions of subducted continental crust in the Dora-Maira massif (Western Alps) have been revised by combining experimental results in the KCMASH system with petrologic information from whiteschists. Textural observations in whiteschists suggest that the peak metamorphic assemblage garnet+phengite+kyanite+coesite±talc originates from the reaction kyanite+talc↔garnet+coesite+liquid. In the experimentally determined petrogenetic grid, this reaction occurs above 45 kbar at 730 °C. At lower pressures, talc reacts either to orthopyroxene and coesite or, together with phengite, to biotite, coesite and kyanite. The liberated liquid contains probably similar amounts of H2O and dissolved granitic components. The composition of the liquid in the whiteschists at peak metamorphic conditions, a major unknown in earlier studies, was probably very similar to the liquid composition produced in the experiments. Therefore, the experimentally determined petrogenetic grid represents a good model for the estimation of the peak metamorphic conditions in whiteschists. Experimentally determined Si-isopleths for phengite further constrain peak pressures to 43 kbar for the measured Si=3.60 of phengite in the natural whiteschists. All these data provide evidence that the whiteschists reached diamond-facies conditions.

The fluid-absent equilibrium 4 kyanite+3 CELADONITE=4 coesite+3 muscovite+pyrope has been calibrated on the basis of garnet and phengite compositions in the experiments and serves as a geothermobarometer for ultra-high-pressure (UHP) metapelites. For graphite-bearing metapelites and kyanite–phengite eclogites, forming the country rocks of the whiteschists, peak metamorphic pressures of about 44±3 kbar were calculated from this barometer for temperatures of 750 °C estimated from garnet–phengite thermometry. Therefore, the whole ultra-high-pressure unit of the Dora-Maira massif most likely experienced peak metamorphic conditions in the diamond stability field. While graphite is common in the metapelites, diamond has not been found so far. The absence of metamorphic microdiamonds might be explained by the low temperature of metamorphism, the absence of a free fluid phase in the metapelites and a short residence time in diamond-facies conditions resulting in kinetic problems in the conversion of graphite to diamond.  相似文献   

39.
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated δ34Ssulfide (3.7 to 12.7‰). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high δ34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (∼400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ∼300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5‰) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 × 1012 g seawater S yr−1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.  相似文献   
40.
The zircons from an eclogite and an enclosed eclogite-facies vein from the Monviso ophiolite (Western Alps) display contrasting chemical and morphologic features and document different stages of the evolution of the ophiolite. The zircons from the eclogite show a typical magmatic zoning and are enriched in heavy rare earth elements (HREEs) over middle rare earth elements (MREEs) and have an accentuated negative Eu anomaly, which indicates that the grains co-crystallised with plagioclase. These magmatic zircons document the formation of oceanic crust at 163 ± 2 Ma. In contrast, zircons from the vein contain inclusions of garnet, omphacite, and rutile, which indicate that they crystallised under eclogite-facies conditions. The vein zircons have Th/U ratios < 0.09, lack Eu anomalies, and are only weakly enriched in HREE with respect to MREE. These features are consistent with a garnet-bearing, plagioclase-free, i.e., eclogite-facies paragenesis. Vein zircons yield an age of 45 ± 1 Ma, which is evidence for Eocene subduction-zone metamorphism of the Monviso ophiolite.In the vein, the apparent coexistence of zircon, omphacite, and garnet permits the determination of a set of trace element distribution coefficients among these minerals at high pressure. This set of partitioning can demonstrate chemical equilibrium among these phases in rocks that show less clear evidence of textural equilibrium. In addition, zircon age can now be linked to sensors of metamorphic pressure-temperature conditions. The presence of zircon and rutile in the vein is another example of high field strength element (HFSE) mobility over short distances in aqueous fluids at eclogite-facies conditions. However, the concentrations of Zr and Hf in the aqueous fluid are estimated to be at least a factor of 10 less than primitive mantle values.Mass balance calculations demonstrate that zircon hosts > 95% of the bulk Zr, 90% of Hf, and ∼25% of U in the vein. Zircon is a residual phase in subducted basalts and sediments up to temperatures of at least 800 to 900 °C. Therefore, residual zircon in subducted crust, together with rutile, control the HFSE in liberated subduction zone fluids/melts and might be partly responsible for negative Zr and Hf anomalies in subduction zone magmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号