首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11759篇
  免费   129篇
  国内免费   68篇
测绘学   240篇
大气科学   744篇
地球物理   2208篇
地质学   4604篇
海洋学   1181篇
天文学   2475篇
综合类   48篇
自然地理   456篇
  2022年   144篇
  2021年   204篇
  2020年   190篇
  2019年   227篇
  2018年   526篇
  2017年   431篇
  2016年   477篇
  2015年   188篇
  2014年   413篇
  2013年   606篇
  2012年   462篇
  2011年   562篇
  2010年   557篇
  2009年   644篇
  2008年   575篇
  2007年   573篇
  2006年   493篇
  2005年   327篇
  2004年   311篇
  2003年   281篇
  2002年   274篇
  2001年   245篇
  2000年   254篇
  1999年   169篇
  1998年   184篇
  1997年   171篇
  1996年   115篇
  1995年   131篇
  1994年   115篇
  1993年   97篇
  1992年   71篇
  1991年   98篇
  1990年   97篇
  1989年   68篇
  1988年   78篇
  1987年   98篇
  1986年   78篇
  1985年   106篇
  1984年   92篇
  1983年   104篇
  1982年   86篇
  1981年   80篇
  1980年   97篇
  1979年   88篇
  1978年   86篇
  1977年   75篇
  1976年   59篇
  1975年   63篇
  1974年   71篇
  1973年   64篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
71.
In the surroundings of Zaragoza, karstification processes are especially intense in covered karst areas where fluvial terraces lie directly on Tertiary evaporites. Since the beginning of Quaternary, these processes have lead to the development of collapse and subsidence dolines with a wide range of sizes, which have significant economic impacts. To reduce economic impact and increase safety, a regional analysis of this phenomenon is needed for spatial management. Therefore, a probability map of dolines was developed using logistic regression and geographic information system (GIS) techniques. This paper covers the selection of input data, manipulation of data using the GIS technology, and the use of logistic regression to generate a doline probability map. The primary variable in the doline development in this area is geomorphology, represented by the location of endorheic areas and different terrace levels. Secondary variables are the presence of irrigation and the water table gradient.  相似文献   
72.
Zaragoza city is located in the central Ebro Basin, in the Iberian Peninsula. The fluvial terraces formed by the Ebro River present a valuable resource of sand and gravel deposits. However, taking advantage of these available resources implies conflicts with other land use interests like urban and industrial development as well as agricultural use, which has also traditionally occupied the alluvial terraces. These deposits represent a substantial groundwater resource that should be preserved for future generations. The development of spatial decision support systems (SDSS) has greatly assisted efforts for solving land-use conflicts. These systems combine the benefits of geographic information systems (GIS) and decision support methodologies and are therefore suitable to manage sustainable development of urban areas. In this contribution, an extraction suitability map taking into consideration a variety of environmental criteria is created with the help of a SDSS. The method used is the analytical hierarchy process which is integrated in ArcGIS. Areas most suitable to sand and gravel extraction are located in the high terraces, and in those terraces covered by pediments where the thickness of resource is relatively high. These areas are far from valuable natural areas, outside areas most vulnerable to groundwater contamination, and beneath soils with poor irrigation characteristics.  相似文献   
73.
Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal   总被引:1,自引:0,他引:1  
This paper presents data on authigenic siderite first found in surface sediments from mud volcanoes in the Central (K-2) and Southern (Malen’kii) basins of Lake Baikal. Ca is the predominant cation, which substitutes Fe in the crystalline lattice of siderite. The enrichment of the carbonates in the 13C isotope (from +3.3 to +6.8‰ for the Malen’kii volcano and from +17.7 to +21.9‰ for K-2) results from the crystallization of the carbonates during methane generation via the bacterial destruction of organic matter (acetate). The overall depletion of the carbonates in 18O is mainly inherited from the isotopic composition of Baikal water.  相似文献   
74.
Calculations of the saturation of groundwaters with respect to minerals of the rocks hosting these waters indicate that most of the analyzed groundwaters were saturates with respect to calcite, dolomite, and quartz. Brines of chloride-calcic composition were determined to be saturated with respect to calcite, whereas brines of chloride-sodic composition are saturated with respect to dolomite and quartz. The solution was simultaneously saturated with respect to six minerals for the association ankerite-calcite-dolomite-pyrite-quartz-strontianite. An increase in the number of minerals with respect to which solution is saturated is correlated with an increase in the diversity of types of groundwaters and an increase in the runoff rate. The paper proposes possible avenues for searches for relations between hydrogeological and geochemical parameters that make it possible to adapt the thermodynamic models to real geological-hydrogeological conditions. The research was centered on the testing of groundwaters for their saturation with respect to minerals of the rocks hosting these waters. This parameter plays a significant part in forming the geochemical type of natural waters because it reflects the crystallization of a mineral from a solution and, consequently, the removal of an element from the aqueous solution.  相似文献   
75.
Rock associations characterized by heterogeneous sets of petrogeochemical parameters were compared by quantifying the degree of their similarity-dissimilarity and searching for discrimination trends between them. Using procedures specially developed for this purpose, it was demonstrated for the first time that the lithotectonic complexes of the Murmansk domain are fundamentally different from those of typical granulite-gneiss terrains and resemble the granite-greenstone terrains of the Baltic shield, Greenland, and Canada. Based on the whole data set, the Murmansk domain can be considered as a deeply eroded Archean granite-greenstone terrain retaining only the tonalite-trondhjemite-gneiss basement with abundant supracrustal enclaves. A trend of the compositional difference between the older and younger rock associations is similar to that between the tholeiitic and boninitic volcanic series. It was suggested that the petrogeochemical “age” trend reflects the initial stage of the compositional evolution of the metamagmatic rocks of the region from metamorphic rocks similar to tholeiites at the early stages to the Paleoproterozoic boninite-like rocks, which are believed to be linked to the unique PGE-bearing province of the northeastern Baltic shield. This implies that the specific metallogenic features of the region emerged already in the Archean, which supported the suggestion on the long duration of geological processes in the Early Precambrian.  相似文献   
76.
Klauea historical summit lavas have a wide range in matrix 18OVSMOWvalues (4·9–5·6) with lower values in rockserupted following a major summit collapse or eruptive hiatus.In contrast, 18O values for olivines in most of these lavasare nearly constant (5·1 ± 0·1). The disequilibriumbetween matrix and olivine 18O values in many samples indicatesthat the lower matrix values were acquired by the magma afterolivine growth, probably just before or during eruption. BothMauna Loa and Klauea basement rocks are the likely sources ofthe contamination, based on O, Pb and Sr isotope data. However,the extent of crustal contamination of Klauea historical magmasis probably minor (< 12%, depending on the assumed contaminant)and it is superimposed on a longer-term, cyclic geochemicalvariation that reflects source heterogeneity. Klauea's heterogeneoussource, which is well represented by the historical summit lavas,probably has magma 18O values within the normal mid-ocean ridgebasalt mantle range (5·4–5·8) based on thenew olivine 18O values. KEY WORDS: Hawaii; Klauea; basalt; oxygen isotopes; crustal contamination  相似文献   
77.
Isotopic-geochronological study of the Pliocene magmatic activity in western part of the Dzhavakheti Highland (northwestern region of the Lesser Caucasus) is carried out. The results obtained imply that the Pliocene magmatic activity lasted in this part of the highland approximately 2 million years from 3.75 to 1.75–1.55 Ma. As is established, the studied volcanic rocks correspond in composition mostly to K-Na subalkaline and more abundant normal basalts. Time constraints of main phases in development of basic volcanism within the study region are figured out. We assume that individual pulses of silicic to moderately silicic volcanism presumably took place in the Dzhavakheti Highland about 3.2 and 2.5 Ma ago.  相似文献   
78.
The Ruiga differentiated mafic-ultramafic intrusion in the northwestern part of the Vetreny Belt paleorift was described for the first time based on geological, petrological, geochronological, and geochemical data. The massif (20 km2 in exposed area) is a typical example of shallow-facies peridotite-gabbro-komatiite-basalt associations and consists of three zones up to 810 m in total thickness (from bottom to top): melanogab-bronorite, peridotite, and gabbro. In spite of pervasive greenschist metamorphism, the rocks contain locally preserved primary minerals: olivine (Fo 75–86), bronzite, augite of variable composition, labradorite, and Cr-spinels. A mineral Sm-Nd isochron on olivine melanogabbronorite from the Ruiga Massif defines an age of 2.39 ± 0.05 Ga, while komatiitic basalts of the Vetreny Belt Formation were dated at 2.40–2.41 Ga (Puchtel et al., 1997). The rocks of the Ruiga intrusion and lava flows of Mt. Golets have similar major, rare-earth, and trace element composition, which suggests their derivation from a single deep-seated source. Their parent magma was presumably a high-Mg komatiitic basalt. In transitional crustal chambers, its composition was modified by olivine-controlled fractionation and crustal contamination, with the most contaminated first portions of the ejected melt. In terms of geology and geochemistry, the considered magmatic rocks of the Vetreny Belt are comparable with the Raglan Ni-PGE komatiite gabbro-peridotite complex in Canada (Naldrett, 2003).  相似文献   
79.
The concept of granitic melt fractionation as the main process in the concentration of rare elements in granites calls for the development of a reliable method to determine the evolutionary sequences of granite series. We propose to use for this purpose a zirconium-hafnium indicator, the Zr/Hf weight ratio in granitic rocks (Zaraisky et al., 1999, 2000). By the example of three classic regions of rare-metal deposits, eastern Transbaikalia, central Kazakhstan, and Erzgebirge (Czech Republic and Germany), it was empirically shown that the Zr/Hf ratio of granites decreases during the fractional crystallization of granite magmas in the sequence granodiorite → biotite granite → leucogranite → lithium-fluorine granite. The reason is the higher affinity of Hf compared with Zr to a granite melt. This implies that the crystallization and settling of accessory zircon will cause the progressive enrichment of Hf relative to Zr in the residual melt. As a result, the Zr/Hf ratio decreases regularly in the series of sequential phases of granite intrusion related to a single magma chamber from granodiorite to biotite granite, leucogranite, and Li-F granite (from 45-30 to 10-2). Our experimental investigations supported the preferential enrichment of haplogranite melt in Hf and zircon crystals in equilibrium with melt in Zr (T= 800°C and P = 1 kbar). The Zr/Hf indicator was tested by the example of the wellknown Kukulbei rare-metal granite complex of eastern Transbaikalia (J3), which is unique in the degree of fractionation of initial granite melt with the formation of three phases of granite emplacement and vein derivatives. An important feature of the complex is its “short” differentiation trend. It was supposed that the granite magma of the first phase is parental, and the later phases forming small intrusive bodies in large massifs of biotite granites of the first phase are sequential products of its crystallization differentiation in a magma chamber. The biotite granites of the first phase are barren. The leucocratic granites of the second phase are accompanied by tin-tungsten greisen deposits (e.g., Spokoininskoe), and the upper part of cupola-like stocks of Li-F amazonite granites of the third phase host apogranite-type tantalum deposits (Orlovka, Etyka, and Achikan). In addition to three granite phases, the Kukulbei complex includes dikes of ongonites, elvans, amazonite granites, and chamber miarolitic pegmatites. All of the granitic rocks of the complex have similar isotopic ages of 142± 0.6 Ma. The Zr/Hf ratio decreases systematically from phase 1 (40–25), to phase 2 (20–10), and phase 3 (10–2). The ongonites, elvans, and pegmatites have similar Zr/Hf ratios (15-5), falling between the ranges of leucocratic muscovite granites and Li-F granites. Compared with other granite series, the granitic rocks of the Kukulbei complex show specific petrographic and geochemical features: they are strongly enriched in Rb, Li, Cs, Be, Sn, W, Mo, Ta, Nb, Bi, and F but depleted in Mg, Ca, Fe, Ti, P, Sr, Ba, V, Co, Ni, Cr, Zr, REE, and Y. From the early to late intrusion phases, the degree of enrichment and depletion in these element groups increases regularly. This is accompanied by a significant decrease (from 40 to 2) in Zr/Hf, which can be used as a reliable indicator of genetic relations, degree of fractionation, and rare-metal potential of granites. Granites with Zr/Hf values lower than 25 are promising for prospecting for Sn, W, Mo, and Be greisen deposits, whereas the formation of Ta deposits requires Zr/Hf values lower than 10.  相似文献   
80.
The reasons for the isotopic and geochemical heterogeneity of magmatism of the Neoproterozoic large Volhynia-Brest igneous province (VBP) are considered. The province was formed at 550 Ma in response to the break up of the Rodinia supercontinent and extends along the western margin of the East European craton, being discordant to the Paleoproterozoic mobile zone that separates Sarmatia and Fennoscandia and the Mesoproterozoic Volhynia-Orsha aulacogen. The basalts of VBP show prominent spatiotemporal geochemical zoning. Based on petrographic, mineralogical, geochemical, and isotopic data, the following types of basalts can be distinguished: olivine-normative subalkaline basalts consisting of low-Ti (sLT, < 1.10–2.0 wt % TiO2; εNd(550) from ?6.6 to ?2.7) and medium-Ti (sMT, 2.0–3.0 wt % TiO2, occasionally up to 3.6 wt % TiO2; εNd(550) from ?3.55 to + 0.6) varieties; normal quartz-normative basalts (tholeiites) including low-Ti (tLT, < 1.75–2.0 wt % TiO2) and medium-to-high-Ti (tHT1, 2.0–3.6 wt % TiO2, εNd(550) from ?1.3 to + 1.0) varieties. The hypabyssal bodies are made up of subalkaline low-Ti olivine dolerites (LT, 1.2–1.5 wt % TiO2; εNd(550) = ?5.8) and subalkaline high-Ti olivine gabbrodolerites (HT2, 3.0–4.5 wt % TiO2; εNd(550) = ?2.5). Felsic rocks of VBP are classed as volcanic rocks of normal (andesidacites, dacites, and rhyodacites) and subalkaline (trachyrhyodacites) series with TiO2 0.72–0.77 wt% and εNd(550) of ?12. The central part of VBP is underlain by a Paleoproterozoic domain formed by continent-arc accretion and contains widespread sills of HT2 dolerites and lavas of LT basalts; the northern part of the province is underlain by the juvenile Paleoproterozoic crust dominated by MT and HT1 basalts. MT and LT basalts underwent significant AFC-style upper crustal contamination. During their long residence in the upper crustal magmatic chambers, the basaltic melts fractionated and caused notable heating of the wall rocks and, correspondingly, nonmodal melting of the upper crustal protolith containing high-Rb phase (biotite), thus producing the most felsic rocks of the province. The basalts of VBP were derived from geochemically different sources: probably, the lithosphere and a deep-seated plume (PREMA type). The HT2 dolerites were generated mainly from a lithospheric source: by 3–4% melting of the geochemically enriched garnet lherzolite mantle. LT dolerites were obtained by partial melting of the modally metasomatized mantle containing volatile-bearing phases. The concepts of VBP formation were summarized in the model of three-stage plume-lithosphere interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号