首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   25篇
  国内免费   1篇
测绘学   10篇
大气科学   40篇
地球物理   105篇
地质学   118篇
海洋学   44篇
天文学   59篇
自然地理   23篇
  2023年   1篇
  2022年   3篇
  2021年   11篇
  2020年   13篇
  2019年   10篇
  2018年   22篇
  2017年   19篇
  2016年   27篇
  2015年   18篇
  2014年   15篇
  2013年   23篇
  2012年   19篇
  2011年   38篇
  2010年   20篇
  2009年   31篇
  2008年   27篇
  2007年   18篇
  2006年   10篇
  2005年   14篇
  2004年   9篇
  2003年   12篇
  2002年   9篇
  2001年   3篇
  2000年   5篇
  1999年   7篇
  1998年   6篇
  1997年   3篇
  1995年   2篇
  1991年   1篇
  1986年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
141.
The Spanish Central System (SCS) batholith, located in the Central Iberian Zone, is one of the largest masses of granite in the European Variscan Belt. This batholith is a composite unit of late- and post-kinematic granitoids dominated by S- and I-type series granite, with subordinate leucogranite and granodiorite. Zircon trace element contents, from two representative S-type and three I-type granitoids from the eastern portion of the SCS batholith, indicate a heterogeneous composition due to magma differentiation and co-crystallisation of other trace element-rich accessory phases. In situ, U–Pb dating of these zircons by SHRIMP and LA-ICP-MS shows 479–462-Ma inherited zircon ages in the I-type intrusions, indicating the involvement of an Ordovician metaigneous protolith, while the S-type intrusions exclusively contain Cadomian and older zircon ages. The zircon crystallisation ages show that these granites have been emplaced at ca. 300?Ma with a time span between 303?±?3?Ma and 298?±?3?Ma. Precise dating by CA-ID-TIMS reveals a pulse at 305.7?±?0.4?Ma and confirms the major pulse at 300.7?±?0.6?Ma. These ages match the Permo-Carboniferous age for granulite-facies metamorphism of the lower crust under the SCS batholith and coincide with a widespread granitic event throughout the Southern Variscides. Ti-in zircon thermometry indicates temperatures between 844 and 784°C for both the S- and I-type granites, reinforcing the hypothesis that these granites are derived from deep crustal sources.  相似文献   
142.
143.
The vertical distribution of macrobenthic fauna, heavy metals, and other physico‐chemical and biological characteristics of the sediments were studied in three sediment layers (0–7, 8–14, 15–21 cm) at seven stations in the Ubatuba region, north coast of São Paulo State, Brazil at several temporal and spatial scales. Six stations were located in the inner bay near the riverine run‐off, and one was outside the bay, distant from the riverine influence. The samples were collected four times in 1 year, on a seasonal basis. Sediments were basis comprised predominantly of very fine sand and the vertical distribution of grain size was uniform to a depth of 21 cm in all stations. Higher values of total organic matter, organic carbon, sulphur, heavy metals and phaeopigments were recorded at the inner Ubatuba Bay stations, probably due to the riverine influence. C/N ratios indicated a mixed origin of organic matter with a major contribution of terrestrial material in the inner stations. The vertical distribution of heavy metals showed a slight decline with sediment depth in the inner stations, indicating the present contribution. Most of the macrofauna was found at the surface sediment layer. Biological data showed that in the inner stations of Ubatuba Bay, which are under the influence of urban sewage and are moderately polluted, the fauna was distributed more superficially within the substrate than in St. 7, which is located in the external portion of the bay distant from sewage inputs. The environmental quality of the sites studied varied little throughout the year, at least in relation to the variables considered here. Temporal variation in the vertical distribution of benthic fauna was not evident in the four sampling surveys analysed. Only minor changes in the vertical distribution of the total fauna were detected in the seasonal scale, with the organisms located less deep within the sediment column in summer, indicating some influence of the tourism impact and/or rainy season.  相似文献   
144.
145.
146.
This work deals with the environmental distribution of nonionic surfactants (nonylphenol and alcohol ethoxylates), their metabolites (NP, nonylphenol; NPEC, nonylphenol ethoxycarboxylates; and PEG, polyethylene glycols) and a selection of 64 pharmaceuticals in the Long Island Sound (LIS) Estuary which receives important sewage discharges from New York City (NYC). Most target compounds were efficiently removed (>95%) in one wastewater treatment plant monitored, with the exception of NPEC and some specific drugs (e.g., hydrochlorothiazide). Concentrations of surfactants (1.4–4.5 μg L−1) and pharmaceuticals (0.1–0.3 μg L−1) in seawater were influenced by tides and sampling depth, consistent with salinity differences. Surfactants levels in suspended solids samples were higher than 1 μg g−1, whereas only most hydrophobic or positively charged pharmaceuticals could be found (e.g., tamoxifen, clarithromycin). Maximum levels of target compounds in LIS sediments (PEG at highest concentrations, 2.8 μg g−1) were measured nearest NYC, sharply decreasing with distance from major sewage inputs.  相似文献   
147.
The multi-proxy analysis of sediment cores recovered in karstic Lake Estanya (42°02′ N, 0°32′ E; 670 m a. s. l., NE Spain), located in the transitional area between the humid Pyrenees and the semi-arid Central Ebro Basin, provides the first high-resolution, continuous sedimentary record in the region, extending back the last 21 000 years. The integration of sedimentary facies, elemental and isotopical geochemistry and biogenic silica, together with a robust age model based on 17 AMS radiocarbon dates, enables precise reconstruction of the main hydrological and environmental changes in the region during the last deglaciation.Arid conditions, represented by shallow lake levels, predominantly saline waters and reduced organic productivity occurred throughout the last glacial maximum (21–18 cal kyrs BP) and the lateglacial, reaching their maximum intensity during the period 18–14.5 cal kyrs BP (including Heinrich event 1) and the Younger Dryas (12.9–11.6 cal kyrs BP). Less saline conditions characterized the 14.5–12.6 cal kyrs BP period, suggesting higher effective moisture during the Bölling/Allerød. The onset of more humid conditions started at 9.4 cal kyrs, indicating a delayed hydrological response to the onset of the Holocene which is also documented in several sites of the Mediterranean Basin. Higher, although fluctuating, Holocene lake levels were punctuated by a mid Holocene arid period between 4.8 and 4.0 cal kyrs BP. A major lake-level rise occurred at 1.2 cal kyrs BP, conducive to the establishment of conditions similar to the present and interrupted by a last major water level drop, occurring around 800 cal yrs BP, which coincides with the Medieval Climate Anomaly.The main hydrological stages in Lake Estanya are in phase with most Western Mediterranean and North Atlantic continental and marine records, but our results also show similarities with other Iberian and northern African reconstructions, emphasizing peculiarities of palaeohydrological evolution of the Iberian Peninsula during the last deglaciation.  相似文献   
148.
Fieldwork, radiometric (40Ar/39Ar and 14C) ages and whole-rock geochemistry allow a reconstruction of eruptive stages at the active, mainly dacitic, Pichincha Volcanic Complex (PVC), whose eruptions have repeatedly threatened Quito, most recently from 1999 to 2001. After the emplacement of basal lavas dated at ∼1100 to 900 ka, the eruptive activity of the old Rucu Pichincha volcano lasted from ∼850 ka to ∼150 ka before present (BP) and resulted in a 15 × 20 km-wide edifice, which comprises three main building stages: (1) A lower stratocone (Lower Rucu, ∼160 km3 in volume) developed from ∼850 to 600 ka; (2) This edifice was capped by a steeper-sided and less voluminous cone (the Upper Rucu, 40–50 km3), the history of which started 450–430 ka ago and ended around 250 ka with a sector collapse; (3) A smaller (8–10 km3) but more explosive edifice grew in the avalanche amphitheatre and ended Rucu Pichincha's history about 150 ka ago. The Guagua Pichincha volcano (GGP) was developed from 60 ka on the western flank of Rucu with four growth stages separated by major catastrophic events. (1) From ∼60 to 47 ka, a basal effusive stratocone developed, terminating with a large ash-and-pumice flow event. (2) This basal volcano was followed by a long-lasting dome building stage and related explosive episodes, the latter occurring between 28–30 and 22–23 ka. These first two stages formed the main GGP (∼30 km3), a large part of which was removed by a major collapse 11 ka BP. (3) Sustained explosive activity and viscous lava extrusions gave rise to a new edifice, Toaza (4–5 km3 in volume), which in turn collapsed around 4 ka BP. (4) The ensuing amphitheatre was partly filled by the ∼1-km3 Cristal dome, which is the historically active centre of the Pichincha complex. The average output rate for the whole PVC is 0.29 km3/ka. Nevertheless, the chronostratigraphic resolution we obtained for Lower Rucu Pichincha and for the two main edifices of Guagua Pichincha (main GGP and Toaza), leads to eruptive rates of 0.60–0.65 km3/ka during these construction stages. These output rates are compared to those of other mainly dacitic volcanoes from continental arcs. Our study also supports an overall SiO2 and large-ion lithophile elements enrichment as the PVC develops. In particular, distinctive geochemical signatures indicate the involvement of a new magma batch at the transition between Rucu and Guagua. At the GGP, the same phenomenon occurs at each major collapse event marking the onset of the ensuing magmatic stage. Since the 11-ka-BP collapse event, this magmatic behaviour has led to increasingly explosive activity. Four explosive cycles of between 100 and 200 years long have taken place at the Cristal dome in the past 3.7 ka, and repose intervals between these cycles have tended to decrease with time. As a consequence, we suggest that the 1999–2001 eruptive period may have initiated a new eruptive cycle that might pose a future hazard to Quito (∼2 million inhabitants).  相似文献   
149.
150.
The Rodalquilar mineral deposits (SE Spain) were formed in Miocene time in relation to caldera volcanic episodes and dome emplacement phenomena. Two types of ore deposits are recognized: (1) the El Cinto epithermal, Au–As high sulphidation vein and breccia type; and (2) peripheral low sulphidation epithermal Pb–Zn–Cu–(Au) veins. The first metallurgical plants for gold extraction were set up in the 1920s and used amalgamation. Cyanide leaching began in the 1930s and the operations lasted until the mid 1960s. The latter left a huge pile of ~900,000–1,250,000 m3 of abandoned As-rich tailings adjacent to the town of Rodalquilar. A frustrated initiative to reactivate the El Cinto mines took place in the late 1980s and left a heap leaching pile of ~120,000 m3. Adverse mineralogical and structural conditions favoured metal and metalloid dispersion from the ore bodies into soils and sediments, whereas mining and metallurgical operations considerably aggravated contamination. We present geochemical data for soils, tailings and wild plant species. Compared to world and local baselines, both the tailings and soils of Rodalquilar are highly enriched in As (mean concentrations of 950 and 180 μg g−1, respectively). Regarding plants, only the concentrations of As, Bi and Sb in Asparagus horridus, Launaea arborescens, Salsola genistoides, and Stipa tenacissima are above the local baselines. Bioaccumulation factors in these species are generally lower in the tailings, which may be related to an exclusion strategy for metal tolerance. The statistical analysis of geochemical data from soils and plants allows recognition of two well-differentiated clusters of elements (As–Bi–Sb–Se–Sn–Te and Cd–Cu–Hg–Pb–Zn), which ultimately reflect the strong chemical influence of both El Cinto and peripheral deposits mineral assemblages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号