首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1525篇
  免费   102篇
  国内免费   7篇
测绘学   27篇
大气科学   121篇
地球物理   427篇
地质学   692篇
海洋学   137篇
天文学   173篇
综合类   6篇
自然地理   51篇
  2024年   5篇
  2023年   8篇
  2022年   24篇
  2021年   39篇
  2020年   31篇
  2019年   31篇
  2018年   72篇
  2017年   81篇
  2016年   90篇
  2015年   73篇
  2014年   87篇
  2013年   138篇
  2012年   70篇
  2011年   104篇
  2010年   94篇
  2009年   106篇
  2008年   83篇
  2007年   69篇
  2006年   47篇
  2005年   38篇
  2004年   33篇
  2003年   32篇
  2002年   34篇
  2001年   27篇
  2000年   18篇
  1999年   10篇
  1998年   15篇
  1997年   16篇
  1996年   14篇
  1995年   9篇
  1994年   19篇
  1993年   7篇
  1992年   10篇
  1991年   10篇
  1990年   3篇
  1989年   10篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1980年   7篇
  1979年   6篇
  1977年   4篇
  1975年   6篇
  1974年   3篇
  1973年   4篇
  1962年   2篇
排序方式: 共有1634条查询结果,搜索用时 15 毫秒
31.
Tortonian calcarenites of the Betic Cordillera were deposited in coastal or very shallow marine environments and represent an ideal marker for estimating vertical movements from the late Miocene to the Present. A map showing the heights at which these Tortonian marine rocks are situated has a clear correlation with the present relief, indicating that today's relief has been formed since the Tortonian. There is also a good correlation between present relief and the Bouguer anomaly distribution in the Betic Cordillera, as well as with crustal thickness. Likewise, the present relief is directly related to the geodynamic setting of a horizontal N–S to NNW–SSE compression and an almost perpendicular extension, along with isostatic readjustment, existing in the Betic Cordillera from the Tortonian. As a result of these regional stresses, faults and folds have produced notable vertical movements. The highest rates of uplift of the Betic Cordillera coincide with large antiforms, in particular those of the Sierra Nevada and the Sierra Filabres. Several subsiding sectors also exist (for example, the Granada Basin or the Guadalquivir Basin). The foreland Guadalquivir Basin has a complex history because the uplift in its eastern sector and subsidence in the western sector coexisted during the late Tortonian. Today the whole Betic Cordillera is characterized by differential regional uplift, even in the aforementioned subsiding sectors.  相似文献   
32.
Lake Chapala is in the Citala Rift of western Mexico, which in association with the Tepic-Zacoalco and Colima Rifts, form the well-known neotectonic Jalisco continental triple junction. The rifts are characterized by evidence for both paleo- and active hydrothermal activity. At the south shore of the lake, near the Los Gorgos sublacustrine hydrothermal field, there are two tar emanations that appear as small islands composed of solid, viscous and black bitumen. Aliquots of tar were analyzed by GC-MS and the mixtures are comprised of geologically mature biomarkers and an UCM. PAH and n-alkanes are not detectable. The biomarkers consist mainly of hopanes, gammacerane, tricyclic terpanes, carotane and its cracking products, steranes, and drimanes. The biomarker composition and bulk C isotope composition (δ13C = −21.4%) indicate an organic matter source from bacteria and algae, typical of lacustrine ecosystems. The overall composition of these tars indicates that they are hydrothermal petroleum formed from lacustrine organic matter in the deeper sediments of Lake Chapala exceeding 40 ka (14C) in age and then forced to the lakebed by tectonic activity. The absence of alkanes and the presence of an UCM with mature biomarkers are consistent with rapid hydrothermal oil generation and expulsion at temperatures of 200–250 °C. The occurrence of hydrothermal petroleum in continental rift systems is now well known and should be considered in future energy resource exploration in such regions.  相似文献   
33.
This article presents a novel finite element formulation for the Biot equation using low-order elements. Additionally, an extra degree of freedom is introduced to treat the volumetric locking steaming from the effective response of the medium; its balance equation is also stabilized. The accuracy of the proposed formulation is demonstrated by means of numerical analyses.  相似文献   
34.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   
35.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
36.
37.
The separated and combined effects of land‐cover scenarios and future climate on the provision of hydrological services were evaluated in Vez watershed, northern Portugal. Soil and Water Assessment Tool was calibrated against daily discharge, sediments and nitrates, with good agreements between model predictions and field observations. Four hypothetical land‐cover scenarios were applied under current climate conditions (eucalyptus/pine, oak, agriculture/vine and low vegetation). A statistical downscaling of four General Circulation Models, bias‐corrected with ground observations, was carried out for 2021–2040 and 2041–2060, using representative concentration pathway 4.5 scenario. Also, the combined effects of future climate conditions were evaluated under eucalyptus/pine and agriculture/vine scenario. Results for land cover revealed that eucalyptus/pine scenario reduced by 7% the annual water quantity and up to 17% in the summer period. Although climate change has only a modest effect on the reduction of the total annual discharge (?7%), the effect on the water levels during summer was more pronounced, between ?15% and ?38%. This study shows that climate change can affect the provision of hydrological services by reducing dry season flows and by increasing flood risks during the wet months. Regarding the combined effects, future climate may reduce the low flows, which can be aggravated with eucalyptus/pine scenario. In turn, peak flows and soil erosion can be offset. Future climate may increase soil erosion and nitrate concentration, which can be aggravated with agriculture scenario. Results moreover emphasize the need to consider both climate and land‐cover impacts in adaptation and land management options at the watershed scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
38.
Historically, paired watershed studies have been used to quantify the hydrological effects of land use and management practices by concurrently monitoring 2 similar watersheds during calibration (pretreatment) and post‐treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control–treatment watershed pair when the regression coefficients for daily water table elevation were most stable to minimize regression model uncertainty. The control and treatment watersheds were 1 watershed of 3–4‐year‐old intensely managed loblolly pine (Pinus taeda L.) with natural understory, 1 watershed of 3–4‐year‐old loblolly pine intercropped with switchgrass (Panicum virgatum), 1 watershed of 14–15‐year‐old thinned loblolly pine with natural understory (control), and 1 watershed of switchgrass only. The study period spanned from 2009 to 2012. Silvicultural operational practices during this period acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. MOSUM results indicated significant changes in regression parameters due to silvicultural operations and were used to identify stable relationships for water table elevation. None of the calibration relationships developed using this method were significantly different from the classical calibration relationship based on published historical data. We attribute that to the similarity of historical and 2010–2012 leaf area index on control and treatment watersheds as moderated by the emergent vegetation. Although the MOSUM approach does not eliminate the need for true calibration data or replace the classic paired watershed approach, our results show that it may be an effective alternative approach when true data are unavailable, as it minimizes the impacts of external disturbances other than the treatment of interest.  相似文献   
39.
This study addresses paleoclimate influences in a southern Amazonia ecotone based on multiproxy records from lakes of the Carajás region during the last 45k cal a bp. Wet and cool environmental conditions marked the initial deposition in shallow depressions with detrital sediments and high weathering rates until 40k cal a bp. Concomitantly, forest and C3 canga plants, along with cool-adapted taxa, developed; however, short drier episodes enabled expansion of C4 plants and diagenetic formation of siderite. A massive event of siderite formation occurred approximately 30k cal a bp under strong drier conditions. Afterwards, wet and cool environmental conditions returned and persisted until the Last Glacial Maximum (LGM). The LGM was marked by lake-level lowstands and subaerial exposure. The transition from the LGM to the Holocene is marked by the onset of oscillations in temperature and humidity, with an expansion of forest and canga plants. Cool taxa were present for the last time in the Carajás region ~ 9.5–9k cal a bp. After 10k cal a bp , shallow lakes became upland swamps due to natural infilling processes, but the current vegetation types and structures of the plateaus were acquired only after 3k cal a bp under wetter climatic conditions.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号