首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   7篇
  国内免费   1篇
测绘学   2篇
大气科学   35篇
地球物理   55篇
地质学   86篇
海洋学   12篇
天文学   14篇
综合类   1篇
自然地理   10篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   7篇
  2018年   7篇
  2017年   3篇
  2016年   11篇
  2015年   10篇
  2014年   12篇
  2013年   9篇
  2012年   12篇
  2011年   19篇
  2010年   16篇
  2009年   13篇
  2008年   13篇
  2007年   9篇
  2006年   11篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有215条查询结果,搜索用时 21 毫秒
51.
A new assessment system for macrophytes and phytobenthos in German rivers meeting the requirements of the Water Framework Directive (WFD) of the European Community is described. Biocoenotic types based on biological, chemical and hydromorphological data from over 200 river sites covering the main ecoregions, hydromorphological stream types and degradation forms have been defined. For developing a classification system the quality element macrophytes and phytobenthos was divided into three components: macrophytes, benthic diatoms and remaining phytobenthos. For macrophytes seven types including one subtype, for benthic diatoms 14 types including three subtypes and for the remaining phytobenthos five river types were identified. The benthic vegetation at reference condition was described for most of the river types. Degradation is characterised as deviation in benthic vegetation species composition and abundance from the reference biocoenosis. For classification in five ecological status classes, several metrics were developed and used in combination with existing indices. For some of the described river types additional investigations are necessary before a classification system can be developed.  相似文献   
52.
Petra Tschakert  Kamini Singha   《Geoforum》2007,38(6):1304-1321
This article provides a counter-narrative to the dominant discourse of marginalization and criminalization of Ghana’s illegal gold miners (galamsey) by focusing on the contested mercury debate. We first examine the complex and multifaceted policy problem that underlies the current conflictual aspects in the small-scale mining sector, arguing that mercury use and contamination are key elements in the antigalamsey rhetoric. Second, we describe an interdisciplinary pilot study on human and environmental health that involved health personnel and illegal miners from two sites. Through participatory ranking and mapping activities, we explored participants’ understanding of mercury and other life hazards as well as causes and consequences of mercury contamination. We used chemical indicator strips to sample contaminated areas in collaboration with the miners. By drawing upon novel concepts from the environmental justice and ecohealth literature, we propose a political ecology of human and environmental health that advocates recognition of galamsey operators and their participation in learning opportunities as a first step out of the current impasse in the Ghanaian small-scale mining sector.  相似文献   
53.
Fractional crystallization of fatty acid methyl esters (FAME) produced from waste cooking oil or animal fats was performed in a laboratory-scale facility. The raw esters and the “winterization” products were analyzed by determining the FAME pattern, iodine and peroxide numbers as well as oxidation stabilities and element concentrations. Fractionation experiments under air and nitrogen were conducted, but no differences concerning oxidative stability were observed. By improvement of the winterization and washing the filtration residue with methanol, the enrichment of saturated FAME in one step was raised up to a technically sufficient rate of 85%. Absorption of oxygen by FAME at different temperatures was measurable. Volatile decomposition products were registrated after heating the FAME at different temperatures. It was shown that antioxidants like butylhydroxytoluene or α-tocopherol were enriched in the phase of unsaturated FAME. This effect obviously affected the oxidative stability of the fraction of saturated FAME during winterization, although no oxidative damage of FAME was detectable at temperatures up to 20°C.  相似文献   
54.
55.
An assessment of uncertainties for ground motion predictions with the aid of the empirical Green's function (EGF) technique is presented. The main input parameters were identified, and their respective uncertainties were assessed by means of an international expert inquiry. The repercussion of these input uncertainties on the final ground motion estimates were investigated by means of the Latin Hypercube Sampling technique. The mean ground motion estimates (response spectra) and their standard deviations were compared with results obtained from empirical attenuation laws. The most sensitive input parameter turned out to be the seismic moment corresponding to the EGF. In general, if the source parameters are well determined, equivalent uncertainties, statistically speaking, can be expected from the EGF technique and from the application of attenuation laws. Therefore, if EGFs with well known source parameters are available, the EGF technique seems to be preferable: site effects are automatically taken into account, and physically realistic acceleration time histories can be obtained. However, further investigations on the reliability of the EGF technique should be performed, and finally, it is recalled that the EGF technique is based on the assumption of linearity. If conditions are such that this assumption cannot be maintained, the EGF technique should be combined with non-linear geotechnical methods.  相似文献   
56.
57.
Several techniques have been introduced in the last decades for the dehydration and release of O2 from biogenic silica (opal-A) for oxygen-isotope analysis. However, only one silica standard is universally available: a quartz standard (NBS28) distributed by the IAEA, Vienna. Hence, there is a need for biogenic silica working standards. This paper compares the existing methods of oxygen-isotope analyses of opal-A and aims to characterize additional possible working standards to calibrate the δ18O values of biogenic silica. For this purpose, an inter-laboratory comparison was organized. Six potential working standard materials were analysed repeatedly against NBS28 by eight participating laboratories using their specific analytical methods. The materials cover a wide range of δ18O values (+23 to +43‰) and include diatoms (marine, lacustrine), phytoliths and synthetically-produced hydrous silica. To characterize the proposed standards, chemical analyses and imaging by scanning electron microscopy (SEM) were also performed. Despite procedural differences at each laboratory, all methods are in reasonable agreement with a standard deviation (SD) for δ18O values between 0.3‰ and 0.9‰ (1σ). Based on the results, we propose four additional biogenic silica working standards (PS1772-8: 42.8‰; BFC: 29.0‰; MSG60: 37.0‰; G95-25-CL leaves: 36.6‰) for δ18O analyses, available on request through the relevant laboratories.  相似文献   
58.
A 4-year study in a central Texas cave quantifies multiple mechanisms that control dripwater composition and how these mechanisms vary at different drip sites. We monitored cave-air compositions, in situ calcite growth, dripwater composition and drip rate every 4-6 weeks. Three groups of drip sites are delineated (Groups 1-3) based on geochemical variations in dripwater composition. Quantitative modeling of mineral-solution reactions within the host carbonate rock and cave environments is used to identify mechanisms that can account for variations in dripwater compositions. The covariation of Mg/Ca (and Sr/Ca) and Sr isotopes is key in delineating whether Mg/Ca and Sr/Ca variations are dictated by water-rock interaction (i.e., calcite or dolomite recrystallization) or prior calcite precipitation (PCP). Group 1 dripwater compositions reflects a narrow range of the extent of water-rock interaction followed by varying amounts of prior calcite precipitation (PCP). Group 2 dripwater compositions are controlled by varying amounts of water-rock interaction with little to no PCP influence. Group 3 dripwater compositions are dictated by variable extents of both water-rock interaction and PCP. Group 1 drip sites show seasonal variations in dripwater Mg/Ca and Sr/Ca, whereas the other drip sites do not. In contrast to the findings of most previous dripwater Mg/Ca-Sr/Ca studies, these seasonal variations (at Group 1 drip sites) are independent of changes in water flux (i.e., rainfall and/or drip rate), and instead significantly correlate with changes in cave-air CO2 concentrations. These results are consistent with lower cave-air CO2, related to cool season ventilation of the cave atmosphere, enhancing calcite precipitation and leading to dripwater geochemical evolution via PCP. Group 1 dripwater Mg/Ca and Sr/Ca seasonality and evidence for PCP as a mechanism that can account for that seasonality, have two implications for many other regions where seasonal ventilation of caves is likely: (1) speleothem trace-element records may provide seasonal signals, and (2) such records may be biased toward recording climate conditions during the season when calcite is depositing. Additionally, we use our results to construct a forward model that illustrates the types of speleothem Mg/Ca and Sr/Ca variations that would result from varying controls on dripwater compositions. The model provides a basis for interpreting paleo-dripwater controls from high frequency Mg/Ca and Sr/Ca variations for speleothems from caves at which long term monitoring studies are not feasible.  相似文献   
59.
New geochemical data on cosmic spherules (187 major element, 76 trace element, and 10 oxygen isotope compositions) and 273 analyses from the literature were used to assess the chemical diversity observed among glass cosmic spherules with chondritic composition. Three chemical groups of glass spherules are identified: normal chondritic spherules, CAT-like spherules (where CAT refers to Ca-Al-Ti-rich spherules), and high Ca-Al spherules. The transition from normal to high Ca-Al spherules occurs through a progressive enrichment in refractory major elements (on average from 2.3 wt.% to 7.0 wt.% for CaO, 2.8 wt.% to 7.2 wt.% for Al2O3, and 0.14 wt.% to 0.31 wt.% for TiO2) and refractory trace elements (from 6.2 μg/g to 19.3 μg/g for Zr and 1.6CI-4.3CI for Rare Earth Elements-REEs) relative to moderately refractory elements (Mg, Si) and volatile elements (Rb, Na, Zn, Pb). Based on a comparison with experimental works from the literature, these chemical groups are thought to record progressive heating and evaporation during atmospheric entry. The evaporative mass losses evaluated for the high Ca-Al group (80-90%) supersede those of the CAT spherules which up to now have been considered as the most heated class of stony cosmic spherules. However, glass cosmic spherules still retain isotopic and elemental evidence of their source and precursor mineralogy. Four out of the 10 normal and high Ca-Al spherules analysed for oxygen isotopes are related to ordinary chondrites (δ18O = 13.2-17.3‰ and δ17O = 7.6-9.2‰). They are systematically enriched in Ni and Co (Ni = 24-500 μg/g) with respect to spherules related to carbonaceous chondrites (Ni < 1.2 μg/g, δ18O = 13.1-28.0‰ and δ17O = 5.1-14.0‰). REE abundances in cosmic spherules, which are not fractionated according to parent body or atmospheric entry heating, can then be used to unravel the precursor mineralogy. Spherules with flat REE pattern close to unity when normalized to CI are the most abundant in our dataset (54%) and likely derive from homogeneous, fine-grained chondritic precursors. Other REE patterns fall into no more than five categories, a surprising reproducibility in view of the mineralogical heterogeneity of chondritic lithologies at the micrometeorite scale.  相似文献   
60.
Denamiel  Cléa  Pranić  Petra  Quentin  Florent  Mihanović  Hrvoje  Vilibić  Ivica 《Climate Dynamics》2020,55(9-10):2483-2509

This numerical work aims to better understand the behavior of extreme Adriatic Sea wave storms under projected climate change. In this spirit, 36 characteristic events—22 bora and 14 sirocco storms occurring between 1979 and 2019, were selected and ran in evaluation mode in order to estimate the skill of the kilometer-scale Adriatic Sea and Coast (AdriSC) modelling suite used in this study and to provide baseline conditions for the climate change impact. The pseudo-global warming (PGW) methodology—which imposes an additional climatological change to the forcing used in the evaluation simulations, was implemented, for the very first time, for a coupled ocean–wave–atmosphere model and used to assess the behavior of the selected storms under Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 greenhouse gas projections. The findings of this experiment are that, on the one hand, the AdriSC model is found capable of reproducing both the Adriatic waves associated with the 36 storms and the northern Adriatic surges occurring during the sirocco events and, on the other hand, the significant wave heights and peak periods are likely to decrease during all future extreme events but most particularly during bora storms. The northern Adriatic storm surges are in consequence also likely to decrease during sirocco events. As it was previously demonstrated that the Adriatic extreme wind-wave events are likely to be less intense in a future warmer climate, this study also proved the validity of applying the PGW methodology to coupled ocean–wave–atmosphere models at the coastal and nearshore scales.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号