首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   3篇
  国内免费   1篇
测绘学   2篇
大气科学   6篇
地球物理   6篇
地质学   15篇
海洋学   2篇
综合类   1篇
自然地理   2篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   11篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2000年   1篇
排序方式: 共有34条查询结果,搜索用时 406 毫秒
11.
Surface soil water content (SWC) is one of the key factors controlling wind erosion in Sistan plain, southeast of Iran. Knowledge of the spatial variability of surface SWC is then important to identify high-risk areas over the region. Sequential Gaussian simulation (SGSIM) is used to produce a series of equiprobable models of SWC spatial distribution across the study area. The simulated realizations are used to model the uncertainty attached to the surface SWC estimates through producing a probability map of not exceeding a specified critical threshold when soil becomes vulnerable to wind erosion. The results show that SGSIM is a suitable approach for modelling SWC uncertainty, generating realistic representations of the spatial distribution of SWC that honour the sample data and reproduce the sample semivariogram model. The uncertainty model obtained using SGSIM is compared with the model achieved through sequential indicator simulation (SISIM). According to accuracy plots, goodness statistics and probability interval width plots, SGSIM performs better for modelling local uncertainty than SISIM. Sequential simulation provided a probabilistic approach to assess the risk that SWC does not exceed a critical threshold that might cause soil vulnerability to wind erosion. The resulted risk map can be used in decision-making to delineate “vulnerable” areas where a treatment is needed.  相似文献   
12.
Previous research on debris‐flow deposit structure typically reports little to no visually discernible stratigraphy. The preliminary findings presented here provide evidence for more complex internal deposit architecture with inverse grading and subunits thought to reflect individual flow surges. Ground‐penetrating radar surveys, geospatial data and field observations are used to describe 10 subunits traceable over the 14 lateral radargrams imaging the lower 38 m of the deposit. Additional subunits are depicted further upslope in a longitudinal transect. As well as demonstrating the need for continued investigation of deposit architecture using non‐traditional techniques, these results may help improve future interpretations of post‐event deposits.  相似文献   
13.
This study is an attempt to identify seismic zones utilizing number-size (N-S) and concentration-area (C-A) fractal models in the West Yazd province, Central Iran. The analysis was based on the earthquakes’ magnitude and Quaternary faults’ density. Fault density map was generated and classified by fractal modeling. The result indicates that the main fault densities correlate with Dehshir and Eqlid faults. Furthermore, the areas with relatively large earthquake magnitudes are located in the SE and NE parts of the region. The Quaternary faults’ density and earthquake magnitudes were weighted based on the results of the fractal modeling. Finally, weighted maps were combined and classified to show that Dehshir fault has the main role for seismicity in this area. Comparison between results derived via the fractal modeling and conventional seismic zonation map is satisfactory. Furthermore, fractal modeling approach distinguishes different seismic zones with higher accuracy in smaller areas. For validation of results, earthquakes since 2012 were collected and associated with seismic zones. These earthquakes which are correlated with major seismic zones are mainly located near the Dehshir and main Zagros faults.  相似文献   
14.
Geochemical anomaly separation using the concentration–area (C–A) method at Kahang (Gor Gor) porphyry system in Central Iran is studied in this work. Lithogeochemical data sets were used in this geochemical survey which was conducted for the exploration for Cu mineralization in dioritic and andesitic units at Kahang Cu–Mo porphyry system. Similar surveys were also carried out for Mo and Au exploration in these rock units. The obtained results have been interpreted using rather extensive set of information available for each mineralized area, consists of detailed geological mapping, structural interpretation and alteration data. Anomalous threshold values for the mineralized zone were computed and compared with the statistical methods based on the data obtained from chemical analysis of samples for the lithological units. Several anomalies at a local scale were identified for Cu (224 ppm), Mo (63 ppm), and Au (31 ppb), and the obtained results suggests existence of local Cu anomalies whose magnitude generally is above 1000 ppm. The correlation between these threshold values and ore grades is clearly interpreted in this investigation. Also, the log–log plots show existence of three stages of Cu enrichment, and two enrichment stages for Mo and Au. The third and most important mineralization event is responsible for the presence of Cu at grades above 1995 ppm. The identified anomalies in Kahang porphyry system, and distribution of the rock types, are mainly monzodiorite and andesitic units, do have special correlation with Cu and monzonitic and dioritic rocks, especially monzodioritic type, which is of considerable emphasis. The threshold values obtained for each element are always lower than their mean content in the rocks. The study shows threshold values for Cu is clearly above the mean rock content, being a consequence of the occurrence of anomalous accumulations of phyllic, argillic and propyllitic alterations within the monzonitic and dioritic rocks especially in monzodioritic type. The obtained results were compared with fault distribution patterns which reveal a positive direct correlation between mineralization in anomalous areas and the faults present in the mineralized system.  相似文献   
15.
The purpose of this study was to identify the various mineralization zones especially supergene enrichment and hypogene in two different Iranian porphyry Cu deposits, based on subsurface data and by using the proposed concentration–volume (C–V) fractal method. The Sungun and Chah-Firuzeh porphyry Cu deposits, which are situated in NW and SE Iran, respectively, were selected for this study. Straight lines fitted through log–log plots showing C–V relations for Cu were employed to separate supergene enrichment and hypogene zones from oxidation zones and barren host rocks in the two deposits and to distinguish a skarn mineralized zone from the hypogene zone in Sungun deposit. In the proposed C–V fractal method, the identification of mineralization zones is based on power–law relationships between Cu concentrations and the volume of rocks hosting porphyry Cu mineralization. Separate subsurface data from the two deposits were analyzed by C–V fractal method and the results have been compared with geological models which included alteration and mineralogical models. The comparison shows that the interpreted zones based on the C–V fractal method are consistent with the geological models. The proposed C–V method is a new approach to defining zones in a mineral deposit and there was no commercial software available to perform the relevant calculations; therefore, a fractal concentration–volume (FCV) software was designed by the authors to achieve this goal.  相似文献   
16.
The goal of this study is to separate different mineralized zones in Dareh-Ashki gold deposit located in Muteh Complex, Central Iran, by using number–size (N-S) fractal model. The N-S log–log plot shows seven geochemical populations and four Au-mineralized zones. Based on obtained results, Au thresholds are 0.17, 0.32, 6.3, and 12.6 ppm which represent weakly, moderately, highly, and extremely mineralized zones in terms of Au grades, respectively. Au values lower than 0.17 ppm illustrate wall rocks. Main mineralization stage of gold commences from 6.3 ppm in this deposit. The moderately mineralized zone with Au values between 0.32 and 6.3 ppm has occupied the biggest part of the studied deposit. However, highly (with Au values between 6.3 and 12.6 ppm) and extremely (higher than 12.6 ppm) mineralized zones have small extension. Correlation between geological model and results from N-S fractal model reveals that the gold mineralized zones specifically the moderately mineralized zone are situated in green schist units.  相似文献   
17.
Geochemical anomaly separation and identification using the number–size (N–S) model at Bardaskan area, NE Iran is studied in this paper. Lithogeochemical data were used in this study which was conducted for the exploration for Au and Cu mineralization and enrichments in Bardaskan area. There are two major mineralization phases concluded epithermal gold and a disseminated systems. N–S log–log plots for Cu, Au, Sb, and As illustrated multifractal natures. Several anomalies at local scale were identified for Au (32 ppb), Cu (28 ppm), As (11 ppm), and Sb (0.8 ppm) and the obtained results suggest existence of local Au and Cu anomalies whose magnitudes generally are above 158 and 354 ppm, respectively. The most important mineralization events are responsible for presence of Au and Cu at grades above 1,778 and 8,912 ppm. The study reveals threshold values for Au and Cu are a consequence of the occurrence of anomalous accumulations of phyllic and silicification alteration zones and metamorphic rocks especially in tuffaceous sandstones and sericite schist types. The obtained results were correlated with fault distribution patterns, revealing a positive direct correlation between mineralization in anomalous areas and the faults present in the mineralized system.  相似文献   
18.
Geochemical anomaly separation using the concentration–number (C–N) method at the Haftcheshmeh porphyry system in NW Iran is the aim of this study. We used lithogeochemical data sets to explore Cu, Mo, Au and Re mineralization in gabbroic, dioritic and monzonitic units at the Haftcheshmeh Cu–Mo porphyry system. The obtained results were interpreted using a rather extensive set of information available for each mineralized area, consisting of detailed geological mapping, structural interpretation and alteration data. Threshold values of elemental anomalies for the mineralized zone were computed and compared with the statistical methods based on the data obtained from chemical analyses of samples for the lithological units. Several anomalies at local scale were identified for Cu (40 ppm), Mo (12 ppm), Au (79 ppb), and Re (0.02 ppm), and the results suggest the existence of local Cu anomalies whose magnitude generally is above 500 ppm. The log–log plots show the existence of three stages of Cu and Mo enrichment, and two enrichment stages for Au and Re. The third and most important mineralization event is responsible for presence of Cu at grades above 159 ppm. The identified anomalies in Haftcheshmeh porphyry system, and distribution of the rock types, are mainly gabbrodiorite–monzodiorite, granodiorite and monzodiorite–diorite that have special correlation with Cu–Mo and gabbroic and monzonitic rocks, especially the gabbrodiorite–monzodiorite type, which is of considerable importance. The study shows that these elemental anomalous parts have been concentrated dominantly by potassic and phyllic, argillic and propylitic alterations within the gabbroic, monzonitic and dioritic rocks especially in the gabrodioritic type in certain parts of the area. The results, which were compared with fault distribution patterns, revealed a positive correlation between mineralization in anomalous areas and the faults present in the mineralized system.  相似文献   
19.
In this study, the relation between ore grade and geological characteristic has been studied as a principle and also important conceptual in Zarshuran gold deposit in NW Iran. The main subject in this study was identifying a correlation among the ore grade populations and rock types which could be used in other steps of local estimation in the deposit concentration–number (CN) fractal model and logratio matrix. The CN log–log plot reveals six geochemical zones defined by Au?<?0.02 ppm as non-mineralized zone and Au?>?0.02 ppm as mineralized zones. According to geological logging and field geology inspection, black gauge, jasperoid, fault gauge and breccia, and carbonaceous rocks are considered as main rock types which contain major Au mineralized zones. The correlation between geological and fractal modeling by logratio matrix shows that there is a good correlation between geological assumed host rocks and CN fractal modeling. Black gauge rock type with 93.48 % of overall accuracy shows a significant correlation with supergene zone of fractal model, and jasperoid with 92.5 % and carbonaceous rock type with 52.90 % have a decent correlation with highly and lowly mineralized zone of fractal model relatively. Black gauge, jasperoid, and fault gauge and breccia have an approximately near cooperation in this zone for mineralization.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号