首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1021篇
  免费   52篇
  国内免费   7篇
测绘学   18篇
大气科学   96篇
地球物理   256篇
地质学   478篇
海洋学   66篇
天文学   110篇
综合类   4篇
自然地理   52篇
  2023年   4篇
  2022年   4篇
  2021年   17篇
  2020年   22篇
  2019年   19篇
  2018年   25篇
  2017年   35篇
  2016年   26篇
  2015年   42篇
  2014年   44篇
  2013年   66篇
  2012年   53篇
  2011年   63篇
  2010年   74篇
  2009年   63篇
  2008年   55篇
  2007年   48篇
  2006年   46篇
  2005年   53篇
  2004年   47篇
  2003年   31篇
  2002年   33篇
  2001年   22篇
  2000年   15篇
  1999年   9篇
  1998年   13篇
  1997年   14篇
  1996年   12篇
  1995年   16篇
  1994年   2篇
  1993年   14篇
  1992年   5篇
  1991年   4篇
  1990年   11篇
  1989年   6篇
  1987年   15篇
  1986年   8篇
  1985年   6篇
  1984年   7篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有1080条查询结果,搜索用时 15 毫秒
121.
The influence of a hedge surrounding bottomland on soil‐water movement along the hillslope was studied on a plot scale for 28 months. The study was based on the comparison of two transects, one with a hedge, the other without, using mainly a dense grid of tensiometers. The influence of the bottomland hedge was located in the area where tree roots were developed, several metres upslope from the hedge, and could be observed both in the saturated and non‐saturated zone, from May to December. The hedge induced a high rate of soil drying, because of the high evaporative capacity of the trees. We evaluated that water uptake by the hedge during the growing season was at least 100 mm higher than without a hedge. This increased drying rate led to a delayed rewetting of the soils upslope from the hedge in autumn, of about 1 month compared with the situation without a hedge. Several consequences of this delayed rewetting are expected: a delay in the return of subsurface transfer from the hillslope to the riparian zone, a buffering effect of hedges on floods, already observed at the catchment scale, and an increased residence time of pollutants. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
122.
Vigouroux  Anne  Pap  Judit M.  Delache  Philippe 《Solar physics》1997,176(1):1-21
The detection of solar irradiance variations (both bolometric and at various wavelengths) by satellite-based experiments during the last one-and-a-half decades stimulated modeling efforts to help identify their causes and to provide estimates of irradiance data for those time intervals when no satellite observations exist. In this paper we present estimates of the long-term irradiance changes developed with Fourier and wavelet transforms. The month-to-month irradiance variations, after removing the solar cycle related long-term changes, are studied with the cross-correlation technique. Results of the analysis reveal a significant phase shift at 3 months between the full-disk magnetic field strength and total solar and UV irradiance, with irradiance leading the magnetic field variability. In addition to this time delay between the changes in solar irradiance and the magnetic field, a 10-month phase shift has been found between the UV flux at 280 nm and total solar irradiance corrected for sunspot darkening. The existence of these phase shifts suggests the possibility of a coupling between the physical processes taking place below, in, and above the photosphere.  相似文献   
123.
Detailed studies of nearby cluster-forming molecular clouds can help us understand the physical processes by which most stars form in galaxies. I review recent advances made on this subject. Submillimeter observations of nearby protoclusters suggest that stars are generally built from finite, detached reservoirs of mass inside molecular cloud cores, and point to a cloud fragmentation origin for the IMF. Much progress in this field will come from future large submillimeter instruments such as Herschel and ALMA. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
124.
125.
126.
127.
128.
129.
In order to fulfill the society demand for climate information at the spatial scale allowing impact studies, long-term high-resolution climate simulations are produced, over an area covering metropolitan France. One of the major goals of this article is to investigate whether such simulations appropriately simulate the spatial and temporal variability of the current climate, using two simulation chains. These start from the global IPSL-CM4 climate model, using two regional models (LMDz and MM5) at moderate resolution (15–20 km), followed with a statistical downscaling method in order to reach a target resolution of 8 km. The statistical downscaling technique includes a non-parametric method that corrects the distribution by using high-resolution analyses over France. First the uncorrected simulations are evaluated against a set of high-resolution analyses, with a focus on temperature and precipitation. Uncorrected downscaled temperatures suffer from a cold bias that is present in the global model as well. Precipitations biases have a season- and model-dependent behavior. Dynamical models overestimate rainfall but with different patterns and amplitude, but both have underestimations in the South-Eastern area (Cevennes mountains) in winter. A variance decomposition shows that uncorrected simulations fairly well capture observed variances from inter-annual to high-frequency intra-seasonal time scales. After correction, distributions match with analyses by construction, but it is shown that spatial coherence, persistence properties of warm, cold and dry episodes also match to a certain extent. Another aim of the article is to describe the changes for future climate obtained using these simulations under Scenario A1B. Results are presented on the changes between current and mid-term future (2021–2050) averages and variability over France. Interestingly, even though the same global climate model is used at the boundaries, regional climate change responses from the two models significantly differ.  相似文献   
130.
With 80 % of world trade carried by sea, seaports provide crucial linkages in global supply-chains and are essential for the ability of all countries to access global markets. Seaports are likely to be affected directly and indirectly by climatic changes, with broader implications for international trade and development. Due to their coastal location, seaports are particularly vulnerable to extreme weather events associated with increasing sea levels and tropical storm activity, as illustrated by hurricane “Sandy”. In view of their strategic role as part of the globalized trading system, adapting ports in different parts of the world to the impacts of climate change is of considerable importance. Reflecting the views of a diverse group of stakeholders with expertise in climate science, engineering, economics, policy, and port management, this essay highlights the climate change challenge for ports and suggests a way forward through the adoption of some initial measures. These include both “soft” and “hard” adaptations that may be spearheaded by individual port entities, but will require collaboration and support from a broad range of public and private sector stakeholders and from society at large. In particular, the essay highlights a need to shift to more holistic planning, investment and operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号