首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1006篇
  免费   50篇
  国内免费   6篇
测绘学   18篇
大气科学   103篇
地球物理   249篇
地质学   462篇
海洋学   63篇
天文学   109篇
综合类   4篇
自然地理   54篇
  2023年   4篇
  2022年   4篇
  2021年   16篇
  2020年   20篇
  2019年   17篇
  2018年   25篇
  2017年   35篇
  2016年   25篇
  2015年   41篇
  2014年   43篇
  2013年   64篇
  2012年   54篇
  2011年   62篇
  2010年   72篇
  2009年   59篇
  2008年   56篇
  2007年   47篇
  2006年   47篇
  2005年   53篇
  2004年   44篇
  2003年   32篇
  2002年   33篇
  2001年   22篇
  2000年   16篇
  1999年   10篇
  1998年   16篇
  1997年   12篇
  1996年   13篇
  1995年   15篇
  1994年   2篇
  1993年   15篇
  1992年   4篇
  1991年   4篇
  1990年   12篇
  1989年   6篇
  1987年   12篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有1062条查询结果,搜索用时 187 毫秒
981.
A large rock and ice avalanche occurred on the north face of Mount Steele, southwest Yukon Territory, Canada, on July 24, 2007. In the days and weeks preceding the landslide, several smaller avalanches initiated from the same slope. The ice and rock debris traveled a maximum horizontal distance 5.76 km with a maximum vertical descent of 2,160 m, leaving a deposit 3.66 km2 in area on Steele Glacier. The seismic magnitude estimated from long-period surface waves (M s) is 5.2. Modeling of the waveforms suggests an estimated duration of approximately 100 s and an average velocity of between 35 and 65 m/s. This landslide is one of 18 large rock avalanches known to have occurred since 1899 on slopes adjacent to glaciers in western Canada. We describe the setting, reconstruct the event chronology and present a preliminary characterization of the Mount Steele ice and rock avalanches based on field reconnaissance, analysis of seismic records and an airborne LiDAR survey. We also present the results of a successful dynamic simulation for the July 24 event.  相似文献   
982.
A seismic study of a segment of the convergent margin of Ecuador is presented. During the SISTEUR campaign a network of 24 Ocean Bottom Seismometers (OBS) was deployed on the Carnegie Ridge, one line along the main axes of the ridge and two lines across the strike of the edge of the ridge, during one month. This marine network was complemented with a land network of 20 stations distributed in two lines: one parallel to the margin and the other perpendicular to it.The seismic event recorded by these networks, were located using different crustal models defined from the wide-angle seismic data modeling. Relative location techniques were used to improve earthquake locations. Seismogram waveform modeling allowed us to constrain hypocentral location for events farther than ~50 km from the network. This modeling also provided additional information to constrain the focal mechanisms of these events. The upper limit of the Interplate Seismogenic Zone (ISZ) is estimated to be at a 10 km depth in the region. The background seismic activity of the upper plate provided new insights:1) A seismic cluster that reaches the base of the overriding plate is linked to the Jipijapa-Portoviejo fault. The reactivation of this Quaternary fault is confirmed by focal mechanisms that provide rupture planes parallel to its superficial projection (N10°–N25°).2) The focal mechanisms presented in this study are compatible with a homogeneous regional stress field corresponding to an E–W to ESE–WNW compression and an NNE–SSW extension. The presence of strike-slip deformation, with a reverse component, corresponds to the NNE escape of the North Andean Block. Normal faulting accommodating this movement suggests that this part of the North Andean Block cannot be considered as a rigid block.  相似文献   
983.
The coastal territories of mainland France constitute a prime example of an at-risk territory, with their growing concentrations of people and economic activities located mostly on a coastal fringe that is subject to shoreline retreat and coastal flooding. The perspective of higher sea levels due to climate changes exacerbates the risk that these territories will be exposed to natural coastal hazards. Since the “invention” of the littoral zone in the mid 19th-century, the vulnerability of the economic stakes on this coastal fringe has been managed mainly by controlling the hazards; this control is coordinated by the national government, which initiated coastal defense practices. At the beginning of the 1980s, natural risk prevention policies favored managing the consequences of natural disasters, with the creation of the CatNat insurance regime to indemnify natural disaster victims. By the middle of the 1990s, new natural risk management strategies had been invented to complete the control of natural hazards. As part of the emerging philosophy of Integrated Coastal Zone Management (ICZM), the French government encouraged the development of natural risk prevention policies by establishing Natural Risk Prevention Plans (PPRn) in 1995. These PPRn were a new approach to shoreline management that favored controlling development in coastal communities. As of 2008, PPRn had been approved in 270 coastal communities and required in 149.At the beginning of the 21st century, the French government set down the general orientations for managing natural coastal risks, but it was not the only stakeholder involved. Collective action emerged, bringing the national government, public institutions and the territorial and local authorities together to develop risk management policies. This collective action was facilitated by a form of decentralization of natural coastal risk management, involving regional or local implementation of the strategic orientations of shoreline management, respecting the general principles defined by the national government. These changes are part of the ICZM implementation process, which has been under way since 2005. The development of natural coastal risk prevention policies is reinforced by the soon-to-be-adopted bill concerning the Grenelle of the Environment. These policies are mainly financed by the Barnier Fund for major natural risk prevention, which is in turn funded by an obligatory contribution based on the CatNat insurance premiums. This type of financing raises the question of the relationship between risk prevention strategies and natural disaster management.  相似文献   
984.
The aim of this work is threefold: (1) to identify the main characteristics of water‐table variations from observations in the Kervidy‐Naizin catchment, a small catchment located in western France; (2) to confront these characteristics with the assumptions of the Topmodel concepts; and (3) to analyse how relaxation of the assumptions could improve the simulation of distributed water‐table depth. A network of piezometers was installed in the Kervidy‐Naizin catchment and the water‐table depth was recorded every 15 min in each piezometer from 1997 to 2000. From these observations, the Kervidy‐Naizin groundwater appears to be characteristic of shallow groundwaters of catchments underlain by crystalline bedrock, in view of the strong relation between water distribution and topography in the bottom land of the hillslopes. However, from midslope to summit, the water table can attain a depth of many metres, it does not parallel the topographic surface and it remains very responsive to rainfall. In particular, hydraulic gradients vary with time and are not equivalent to the soil surface slope. These characteristics call into question some assumptions that are used to model shallow lateral subsurface flow in saturated conditions. We investigate the performance of three models (Topmodel, a kinematic model and a diffusive model) in simulating the hourly distributed water‐table depths along one of the hillslope transects, as well as the hourly stream discharge. For each model, two sets of parameters are identified following a Monte Carlo procedure applied to a simulation period of 2649 h. The performance of each model with each of the two parameter sets is evaluated over a test period of 2158 h. All three models, and hence their underlying assumptions, appear to reproduce adequately the stream discharge variations and water‐table depths in bottom lands at the foot of the hillslope. To simulate the groundwater depth distribution over the whole hillslope, the steady‐state assumption (Topmodel) is quite constraining and leads to unacceptable water‐table depths in midslope and summit areas. Once this assumption is relaxed (kinematic model), the water‐table simulation is improved. A subsequent relaxation of the hydraulic gradient (diffusive model) further improves water‐table simulations in the summit area, while still yielding realistic water‐table depths in the bottom land. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
985.
This paper deals with the seismic response assessment of an old reinforced concrete viaduct and the effectiveness of friction‐based retrofitting systems. Emphasis was laid on an old bridge, not properly designed to resist seismic action, consisting of 12 portal piers that support a 13‐span bay deck for each independent roadway. On the basis of an OpenSEES finite element frame pier model, calibrated in a previous experimental campaign with cyclic displacement on three 1:4 scale frame piers, a more complex experimental activity using hybrid simulation has been devised. The aim of the simulation was twofold: (i) to increase knowledge of non‐linear behavior of reinforced concrete frame piers with plain steel rebars and detailing dating from the late 1950s; and (ii) to study the effectiveness of sliding bearings for seismic response mitigation. Hence, to explore the performance of the as built bridge layout and also of the viaduct retrofitted with friction‐based devices, at both serviceability and ultimate limit state conditions, hybrid simulation tests were carried out. In particular, two frame piers were experimentally controlled with eight‐actuator channels in the as built case while two frame piers and eight sliding bearings were controlled with 18‐actuator channels in the isolated case. The remaining frame piers were part of numerical substructures and were updated offline to accurately track damage evolution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
986.
Contamination of the marine environment following the accident at the Fukushima Daiichi nuclear power plant (FDNPP) represents the most important influx of artificial radioactivity released into the sea ever recorded. The evaluation, in near real time, of the total amount of radionuclide released at sea and of the residence time in coastal waters were ones of challenges for nuclear authorities during this event. In the framework of a crisis situation, a numerical hydrodynamical model has been built and used ‘as is’. The concomitant use of this numerical model and in situ data allows the comparison of the simulated and measured environmental half-times. A tuning of the wind drag coefficient has been nevertheless necessary to reproduce the evolution of measured inventories of 137Cs and 134Cs between April and June 2011. After tuning, the relative mean absolute error between measured and simulated concentrations for the 849 measurements in the dataset is 69 %, while the relative bias indicates a model underestimation of 4 %. These results confirm the estimates of the source term, i.e. 27 PBq (12–41 PBq) for direct releases and 3 PBq for atmospheric deposition onto the sea. The parameters applied here to simulate atmospheric deposition onto the sea are within the correct order of magnitude for reproducing seawater concentrations. Quantitative inventories of tracers which integrate dispersion and transport processes are useful to test model reliability. It exhausts the model sensibility to meteorological forcing, which remains difficult to appraise to reproduce mid- to long-term transport.  相似文献   
987.
A consistent time series of synoptic and high-frequency bathymetric observations is fundamental to improving our understanding and predictive capabilities regarding the morphological behavior of large coastal inlets. Based on satellite observations, an original approach is proposed to characterize the long-term morphological evolution of the Arcachon lagoon inlet and to describe sediment bypassing and breaching mechanisms. The almost 26-year-long remotely sensed data archive used in this study is built from 78 suitable SPOT images (1986–2012) collected in the framework of the KALIDEOS-Littoral program. Bathymetric information is derived from satellite data using a physics-based model. A validation exercise performed on a large bathymetric survey data set (N?=?43,949) demonstrates that the inversion model performs excellently in estimating the depth of mildly to moderately turbid shallow waters. The performance of the model suggests that the minimum requirements are fulfilled to apply the SPOT-derived bathymetry to morphodynamic applications. We demonstrate that high-spatial-resolution multispectral sensors are well adapted to analyzing the morphological evolution of small- (i.e., sand dunes), medium- (i.e., sandbanks and channels), and large- (i.e., the entire inlet-lagoon system) scale sedimentary structures present in coastal inlets. For the first time, the long-term evolution of a flood and ebb-tidal delta is characterized by observations at a seasonal timescale. Finally, migration rates of sedimentary entities are quantified, and fundamental mechanisms driving the sediment transport cross the inlet are confirmed.  相似文献   
988.
The relationship between the underwater light availability at different wavelengths (from 351 to 700?nm) and the fatty acid (FA) composition of seston, as well as the trophic transfer of fatty acids from producers to consumers and its influence on copepod growth condition, were investigated throughout fluvial Lac Saint-Pierre (Québec, Canada). Seston and zooplankton were collected at 11 sampling sites located within distinct water masses discriminated according to their underwater spectral characteristics. Diffuse light attenuation coefficients (Kd(??)) varied among sampling sites and wavelengths (??) and were negatively correlated to seston composition in some essential fatty acids. Particularly, the relationships between Kd(??) and the seston concentration in 20:5n3 and 22:6n3 differed and were wavelength dependent, being stronger for ?? close to the absorption maxima of chlorophyll a, suggesting a potential link with photosynthetic processes. The concentrations of 16:1n7, 18:3n3 and 20:5n3 in copepods were strongly correlated to those in the seston, which points towards the trophic transfer of these fatty acids between primary producers and herbivorous consumers. Moreover, the growth condition of copepods, as expressed by their RNA:DNA ratio, was correlated to the concentrations of 16:1n7, 18:3n3 and 20:5n3 in the seston and in copepods. Our field study sheds light on the potential importance, yet to be precised, of specific wavelengths as a driver of Lac Saint-Pierre??s productivity through their influence on fatty acids composition of seston and its nutritional quality for primary consumers.  相似文献   
989.
The Mediterranean Sea is a region of intense air–sea interactions, with in particular strong evaporation over sea which drives the thermohaline circulation. The Mediterranean region is also prone to strong precipitation events characterized by low spatial extent, short duration, and high temporal variability. The impacts of intense offshore precipitation over sea, in the Gulf of Lions which is a spot for winter deep convection, are investigated using four sensitivity simulations performed at mesoscale resolution with the eddy-resolving regional ocean model NEMO-MED12. We use various atmospheric fields to force NEMO-MED12, downscaled from reanalyses with the non-hydrostatic mesoscale Weather Research and Forecasting model but differing in space resolutions (20 and 6.7 km) or in time frequencies (daily and three-hourly). This numerical study evidences that immediate, intense, and rapid freshening occurs under strong precipitation events. The strong salinity anomaly induced extends horizontally (≃50 km) as vertically (down to 50 m) and persists several days after strong precipitation events. The change in the space resolution of the atmospheric forcing modifies the precipitating patterns and intensity, as well as the shape and the dynamics of the low-salinity layer formed are changed. With higher forcing frequency, shorter and heavier precipitation falls in the ocean in the center of the Gulf of Lions, and due to a stronger vertical shear and mixing, the low-salinity anomaly propagates deeper.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号