首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4467篇
  免费   1311篇
  国内免费   29篇
测绘学   96篇
大气科学   152篇
地球物理   2321篇
地质学   1816篇
海洋学   333篇
天文学   733篇
综合类   2篇
自然地理   354篇
  2023年   10篇
  2021年   48篇
  2020年   81篇
  2019年   228篇
  2018年   231篇
  2017年   321篇
  2016年   365篇
  2015年   385篇
  2014年   427篇
  2013年   513篇
  2012年   343篇
  2011年   349篇
  2010年   321篇
  2009年   267篇
  2008年   282篇
  2007年   218篇
  2006年   182篇
  2005年   174篇
  2004年   168篇
  2003年   156篇
  2002年   139篇
  2001年   113篇
  2000年   104篇
  1999年   35篇
  1998年   21篇
  1997年   20篇
  1996年   20篇
  1995年   16篇
  1994年   13篇
  1993年   15篇
  1992年   20篇
  1991年   8篇
  1990年   8篇
  1989年   17篇
  1988年   8篇
  1987年   12篇
  1986年   6篇
  1985年   10篇
  1984年   9篇
  1983年   18篇
  1982年   11篇
  1981年   16篇
  1980年   6篇
  1979年   9篇
  1978年   12篇
  1977年   9篇
  1976年   8篇
  1975年   7篇
  1974年   8篇
  1969年   6篇
排序方式: 共有5807条查询结果,搜索用时 15 毫秒
161.
We compared the interannual variability of annual daily maximum and minimum extreme water levels in Lake Ontario and the St Lawrence River (Sorel station) from 1918 to 2010, using several statistical tests. The interannual variability of annual daily maximum extreme water levels in Lake Ontario is characterized by a positive long‐term trend showing two shifts in mean (1929–1930 and 1942–1943) and a single shift in variance (in 1958–1959). In contrast, for the St Lawrence River, this interannual variability is characterized by a negative long‐term trend with a single shift in mean, which occurred in 1955–1956. As for annual daily minimum extreme water levels, their interannual variability shows no significant long‐term change in trend. However, for Lake Ontario, the interannual variability of these water levels shows two shifts in mean, which are synchronous with those for maximum water levels, and a single shift in variance, which occurred in 1965–1966. These changes in trend and stationarity (mean and variance) are thought to be due to factors both climatic (the Great Drought of the 1930s) and human (digging of the Seaway and construction of several dams and locks during the 1950s). Despite this change in means and variance, the four series are clearly described by the generalized extreme value distribution. Finally, annual daily maximum and minimum extreme water levels in the St Lawrence and Lake Ontario are negatively correlated with Atlantic multidecadal oscillation over the period from 1918 to 2010. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
162.
This paper proposes a numerical approach to the hyperstatic reaction method (HRM) for the analysis of segmental tunnel linings. The influence of segmental joints has been considered directly using a fixity ratio that is determined on the basis of the rotational stiffness. The parameters necessary for the calculation are presented. A specific implementation has been developed using a FEM framework. This code is able to consider the three‐dimensional (3D) effect of segment joints in successive rings on the tunnel lining behaviour. The present HRM allows one to take an arbitrary distribution of segment joints along the tunnel boundary into consideration. In addition, the rotational stiffness of segment joints has been simulated using nonlinear behaviour, as it is closer to the true behaviour of a joint than linear or bilinear behaviour. The numerical results of three hypotheses on ring interaction, which allow the 3D effect of a segmental tunnel lining to be taken into account, have been compared with data obtained from the shield‐driven tunnel of the Bologna–Florence high‐speed railway line project. The numerical results presented in the paper show that the proposed HRM can be used to effectively estimate the behaviour of a segmental tunnel lining. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
163.
164.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   
165.
Submarine groundwater discharge (SGD) is a global phenomenon that carries large volumes of groundwater and dissolved chemical species such as nutrient, metals, and organic compounds to coastal zones. We report the influence of SGD on the coastal waters of Jeju Island, Korea, using high‐resolution aerial thermal infrared (TIR) mapping techniques and field investigations. An aircraft‐based system was implemented using a cost‐effective TIR camera for aerial TIR mapping. Ground‐based calibrations and system integration with GPS/IMU (global positioning system/inertial measurement unit) were performed for the aerial systems. The aerial surveys showed distinct low‐temperature signatures of SGD along the coasts of Jeju Island, revealing large groundwater inputs from the coastal aquifers to the ocean. Multiple aerial surveys over a range of seasons and tidal stages revealed that SGD rates dynamically affect the sea surface temperature (SST) of the coastal zone. The in‐situ measurements supported that SGD has a substantial influence on the coastal water chemistry as well as SST. Our observations highlight the extent to which aerial‐based TIR mapping can serve as a powerful tool for studying SGD and other coastal processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
166.
Shrink–swell soils, such as those in a Mediterranean climate regime, can cause changes in terms of hydrological and erosive responses because of the changing soil water storage conditions. Only a limited number of long‐term studies have focused on the impacts on both hydrological and erosive responses and their interactions in an agricultural environment. In this context, this study aims to document the dynamics of cracks, runoff and soil erosion within a small Mediterranean cultivated catchment and to quantify the influence of crack processes on the water and sediment supplied to a reservoir located at the catchment outlet using water and sediment measurements at a cultivated field outlet as baseline. Detailed monitoring of the presence of topsoil cracks was conducted within the Kamech catchment (ORE OMERE, Tunisia), and runoff and suspended sediment loads were continuously measured over a long period of time (2005–2012) at the outlets of a field (1.32 ha) and a catchment (263 ha). Analysis of the data showed that topsoil cracks were open approximately half of the year and that the rainfall regime and water table level conditions locally control the seasonal cracking dynamics. Topsoil cracks appeared to seriously affect the generation of runoff and sediment concentrations and, consequently, sediment yields, with similar dynamics observed at the field and catchment outlets. A similar time lag in the seasonality between water and sediment delivery was observed at these two scales: although the runoff rates were globally low during the presence of topsoil cracks, most sediment transport occurred during this period associated with very high sediment concentrations. This study underlines the importance of a good prediction of runoff during the presence of cracks for reservoir siltation considerations. In this context, the prediction of cracking effects on runoff and soil erosion is a key factor for the development of effective soil and water management strategies and downstream reservoir preservation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
167.
168.
Water levels in cryoconite holes were monitored at high resolution over a 3‐week period on Austre Brøggerbreen (Svalbard). These data were combined with melt and energy balance modelling, providing insights into the evolution of the glacier's near‐surface hydrology and confirming that the hydrology of the near‐surface, porous ice known as the ‘weathering crust’ is dynamic and analogous to a shallow‐perched aquifer. A positive correlation between radiative forcing of melt and drainage efficiency was found within the weathering crust. This likely resulted from diurnal contraction and dilation of interstitial pore spaces driven by variations in radiative and turbulent fluxes in the surface energy balance, occasionally causing ‘sudden drainage events’. A linear decrease in water levels in cryoconite holes was also observed and attributed to cumulative increases in near‐surface ice porosity over the measurement period. The transport of particulate matter and microbes between cryoconite holes through the porous weathering crust is shown to be dependent upon weathering crust hydraulics and particle size. Cryoconite holes therefore yield an indication of the hydrological dynamics of the weathering crust and provide long‐term storage loci for cryoconite at the glacier surface. This study highlights the importance of the weathering crust as a crucial component of the hydrology, ecology and biogeochemistry of the glacier ecosystem and glacierized regions and demonstrates the utility of cryoconite holes as natural piezometers on glacier surfaces. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
169.
The lithospheric strike‐slip Altyn Tagh Fault has accommodated hundreds of kilometres of displacement between the Qaidam and Tarim blocks since its Eocene reactivation. However, the way the deformation is accommodated in the Qilian Shan and further east remains uncertain. Based on 360 km of north‐eastward migration of the relatively rigid Qaidam block along the Altyn Tagh Fault and 3D isovolumetric balancing of the crustal deformation within the Altyn Tagh Fault–Qilian Shan system, we demonstrate that 250 ± 28 km (43.8–49.4%) of N20E directed crustal shortening and an additional ~250–370 km of eastward motion of the Qilian Shan crust must be accounted for by strike‐slip faulting in the Qilian Shan and crustal thickening in the Qinling area, as well as by extension in the adjoining North China block graben systems.  相似文献   
170.
At first sight, experimental results and observations on rocks suggest that the Zr content in rutile, where equilibrated with quartz and zircon, should be a useful thermometer for metamorphic rocks. However, diffusion data for Zr in rutile imply that thermometry should not, for plausible rates of cooling, give the high temperatures commonly observed in high‐grade metamorphic rocks. It is suggested here that such observations can be accounted for by high‐T diffusive closure of Si in rutile, causing the interior of rutile grains to become insensitive to the thermometer equilibrium well above the temperature of Zr diffusive closure. Paired with comparatively slow grain boundary diffusion and problematic zircon nucleation, this allows for cases of Zr retention in rutile through temperatures where Zr is still diffusively mobile within rutile grains. Other observations that may be accounted for in this context are large inter‐grain ranges of rutile Zr contents uncorrelated with rutile grain size, and flat Zr profiles across individual rutile grains, counter to what would be expected from diffusive closure. A consequence is that it is unlikely that Zr‐in‐rutile thermometry will be useful for estimating rock cooling rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号