首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   2篇
测绘学   10篇
大气科学   22篇
地球物理   9篇
地质学   24篇
海洋学   1篇
天文学   1篇
自然地理   1篇
  2022年   4篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   6篇
  2016年   10篇
  2015年   10篇
  2014年   6篇
  2013年   6篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  1998年   1篇
  1991年   1篇
排序方式: 共有68条查询结果,搜索用时 31 毫秒
51.
Accurate estimation of evapotranspiration is generally constrained due to lack of required hydrometeorological datasets. This study addresses the performance analysis of reference evapotranspiration (ETo) estimated from NASA/POWER, National Center for Environmental Prediction (NCEP) global reanalysis data before and after dynamical downscaling through the Weather Research and Forecasting (WRF) model. The state-of-the-art Hamon’s and Penman-Monteith’s methods were utilized for the ETo estimation in the Northern India. The performance indices such as bias, root mean square error (RMSE), and correlation (r) were calculated, which showed the values 0.242, 0.422, and 0.959 for NCEP data (without downscaling) and 0.230, 0.402, and 0.969 for the downscaled data respectively. The results indicated that after WRF downscaling, there was some marginal improvement found in the ETo as compared to the without downscaling datasets. However, a better performance was found in the case of NASA/POWER datasets with bias, RMSE, and correlation values of 0.154, 0.348, and 0.960 respectively. In overall, the results indicated that the NASA/POWER and WRF downscaled data can be used for ETo estimation, especially in the ungauged areas. However, NASA/POWER is recommended as the ETo calculations are less computationally expensive and easily available than performing WRF simulations.  相似文献   
52.
53.
Crop classification is needed to understand the physiological and climatic requirement of different crops. Kernel-based support vector machines, maximum likelihood and normalised difference vegetation index classification schemes are attempted to evaluate their performances towards crop classification. The linear imaging self-scanning (LISS-IV) multi-spectral sensor data was evaluated for the classification of crop types such as barley, wheat, lentil, mustard, pigeon pea, linseed, corn, pea, sugarcane and other crops and non-crop such as water, sand, built up, fallow land, sparse vegetation and dense vegetation. To determine the spectral separability among crop types, the M-statistic and Jeffries–Matusita (JM) distance methods have been utilised. The results were statistically analysed and compared using Z-test and χ2-test. Statistical analysis showed that the accuracy results using SVMs with polynomial of degrees 5 and 6 were not significantly different and found better than the other classification algorithms.  相似文献   
54.
This study reports for the first-time the ambient concentrations of HULIS mass (HULIS-OM, Humic-like substances) and HULIS-C (carbon) in PM10 (particulate matter with aerodynamic diameter?≤?10 μm) from the Indo-Gangetic Plain (IGP at Kanpur, wintertime). HULIS extraction followed by purification and isolation protocol with methanol: acetonitrile (1:1 v/v) on HLB (Hydrophilic-Lipophilic Balanced) cartridge has been established. Quantification of HULIS-C was achieved on a total organic carbon (TOC) analyser whereas HULIS-OM was determined gravimetrically. Consistently high recovery (> 90%) of HULIS-C based on analysis of Humic standard (sodium salt of Humic acid) suggested suitability of our established analytical protocol involving solvent extraction, purification and accurate quantification of HULIS. HULIS-OM varied from 17.3–38 μg m?3 during daytime and from 19.8–40.6 μg m?3 during night in this study. During daytime the HULIS-OM constituted 20–30% mass fraction of OMTotal and 10–15% of PM10 mass. However, a relatively low contribution of HULIS-OM has been observed during the night. This observation has been attributed to higher concentrations of OM and PM10 in night owing to nighttime chemical reactivity and condensation of organics in conjunction with shallower planetary boundary layer height. Strong correlation of HULIS-C with K+BB (R2?>?0.80) and significant day-night variability of HULIS-C/WSOC ratio in conjunction with air-mass back trajectories (showing transport of pollutants from upwind IGP) suggest biomass burning emission and secondary transformations as important sources of HULIS over IGP. High-loading of atmospheric PM10 (as high as 440 μg m?3) with significant contribution of water-soluble organic aerosols (WSOC/OC: ~ 0.40–0.80) during wintertime highlights their plausible potential role in fog and haze formation and their impact on regional-scale atmospheric radiative forcing over the IGP.  相似文献   
55.
Several new active fault traces were identified along Katrol Hill Fault (KHF). A new fault (named as Bhuj Fault, BF) that extends into the Bhuj Plain was also identified. These fault traces were identified based on satellite photo interpretation and field survey. Trenches were excavated to identify the paleoseismic events, pattern of faulting and the nature of deformation. New active fault traces were recognized about 1km north of the topographic boundary between the Katrol Hill and the plain area. The fault exposure along the left bank of Khari River with 10m wide shear zone in the Mesozoic rocks and showing displacement of the overlying Quaternary deposits is indicative of continued tectonic activity along the ancient fault. The E-W trending active fault traces along the KHF in the western part changes to NE-SW or ENE-WSW near Wandhay village. Trenching survey across a low scarp near Wandhay village reveals three major fault strands F1, F2, and F3. These fault strands displaced the older terrace deposits comprising Sand, Silt and Gravel units along with overlying younger deposits from units 1 to 5 made of gravel, sand and silt. Stratigraphic relationship indicates at least three large magnitude earthquakes along KHF during Late Holocene or recent historic past.  相似文献   
56.
57.
58.
The experiments reported here emphasize the importance of observations in the prediction of tropical cyclones. Towards this end a symmetric numerical model in which convection, parametrized by the Arakawa-Schubert (AS) scheme, was adopted. A mean thermodynamical state, which represents the monsoon conditions over the Bay of Bengal, with constant moist static energy for the mixed layer was adopted. Experiments were then done with different initial conditions. We found that tropical cyclone development measured by the central pressure was very sensitive to the initial convergence field. In the present state of satellite technology, it was impossible to predict even a gross parameter like the central pressure with an accuracy better than 6 mb for 12 hours. However, it was seen that under a variety of initial conditions the final state characterized by the magnitude of the central low pressure remained practically unaltered. We suggest that, given the necessary conditions for genesis, the final state of the cyclone acts as an attractor (regarding its central pressure) and the diverse initial conditions, under the influence of thermodynamic forcing, will lead to the same final state.  相似文献   
59.
60.
Natural Hazards - During the extreme precipitation event of 15th–17th June 2013 in Garhwal Himalaya, glacial lake outburst flooding accompanied by numerous landslides and flash flood events...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号