首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6152篇
  免费   1295篇
  国内免费   2039篇
测绘学   960篇
大气科学   1475篇
地球物理   1147篇
地质学   3210篇
海洋学   896篇
天文学   231篇
综合类   600篇
自然地理   967篇
  2024年   43篇
  2023年   150篇
  2022年   355篇
  2021年   433篇
  2020年   356篇
  2019年   417篇
  2018年   433篇
  2017年   360篇
  2016年   384篇
  2015年   378篇
  2014年   400篇
  2013年   463篇
  2012年   433篇
  2011年   416篇
  2010年   441篇
  2009年   410篇
  2008年   431篇
  2007年   367篇
  2006年   339篇
  2005年   273篇
  2004年   235篇
  2003年   187篇
  2002年   255篇
  2001年   230篇
  2000年   190篇
  1999年   198篇
  1998年   128篇
  1997年   116篇
  1996年   135篇
  1995年   115篇
  1994年   91篇
  1993年   69篇
  1992年   58篇
  1991年   42篇
  1990年   26篇
  1989年   31篇
  1988年   26篇
  1987年   15篇
  1986年   11篇
  1985年   6篇
  1984年   7篇
  1983年   5篇
  1982年   10篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1958年   3篇
  1954年   1篇
排序方式: 共有9486条查询结果,搜索用时 31 毫秒
211.
The Himalayan Foreland Basin in the Ganga Valley is key to assessing the pre‐collision relationship between cratonic India and the Himalaya – the world's largest mountain chain. The subsurface Ganga Supergroup, representing the sedimentary basement of the Ganga Valley, has been interpreted as a northern extension of the Proterozoic Vindhyan Supergroup in cratonic India. This interpretation is contentious because the depositional age of the Ganga Supergroup is not resolved: whereas the lower Ganga Supergroup is widely regarded as Proterozoic, the upper Ganga Supergroup has been variously inferred to include Neoproterozoic, lower Palaeozoic, or Cretaceous strata. Here, we integrate biostratigraphic and detrital zircon data from drill cores to show that the entire Ganga Supergroup is likely Proterozoic and can be correlated with Proterozoic successions on the northern Indian craton and in the Lesser Himalaya. This helps redefine the first‐order stratigraphic architecture and indicates broad depositional continuity along the northern Indian margin during the Proterozoic.  相似文献   
212.
213.
To investigate the sources of particulate organic matter (POM) and the impact of Three Gorges Dam (TGD), two large lakes and erosion processes on determining the composition and flux of POM in low water discharge periods along the middle and lower Changjiang, suspended particulate samples were collected along the middle and lower reaches of the Changjiang (Yangtze River) in January 2008. Organic geochemistry of bulk sediment (particulate organic carbon, organic carbon to nitrogen molar ratio (C/N), stable carbon isotope (δ13C) and grain size) and biomarker of bulk sediment (lignin phenols) were measured to trace the sources of POM. The range of C/N ratios (6.4–8.9), δ13C (?24.3‰ – ?26.2‰) and lignin phenols concentration Λ8 (0.45 mg/100 mg OC‐2.00 mg/100 mg OC) of POM suggested that POM originated from the mixture of soil, plant tissue and autochthonous organic matter (OM) during the dry season. POM from lakes contained a higher portion of terrestrial OM than the mainstream, which was related to sand mining and hydropower erosion processes. A three end‐member model based on δ13C and Λ8 was performed. The results indicated that soil contributed approximately 50% of OM to the POM, which is the dominant OM source in most stations. POM composition was affected by total suspended matter (TSM) and grain size composition, and the direct OM input from two lakes and channel erosion induced OM. The lower TSM concentration in January 2008 was mainly caused by seasonal variations; the impact from the TGD in the dry season was relatively small. A box model indicated that more than 90% of the terrestrial OM transported by the Changjiang in January 2008 was from the middle and lower drainage basins. Channel erosion induced OM, and contributions from Poyang Lake were the major terrestrial OM sources in the dry season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
214.
Flow in a single fracture (SF) is an important research subject in groundwater hydrology, hydraulic engineering, radioactive nuclear waste repository and geotechnical engineering. An abruptly changing aperture is a unique type of SF. This study discusses the relation between the values of the critical Reynolds number (Rec) for the onset of symmetry breaking of flow and the expansion ratio (E) of SF, which is defined as the ratio between the outlet (D) and inlet (d) apertures. This study also investigates the effect of inlet aperture d on Rec for flow in an SF with abruptly changing apertures (SF‐ACA) using the finite volume method. Earlier numerical and experimental results showed that flow is symmetric in respect to the central plane of the SF‐ACA at small Reynolds number (Re) but becomes asymmetric when Re is sufficiently large. Our simulations show that the value of Rec decreases with the increasing E, and the relationship between the logarithm of Rec and E can be described accurately using either a quadratic polynomial function or a logarithmic function. However, the relationship of Rec and d for a given E value is vague, and Rec becomes even less sensitive to d when E increases. This study also reveals that the hydraulic gradient (J) and flow velocity (v) follow a super‐linear relationship that can be fitted almost perfectly by the Forchheimer equation. The inertial component (Ji) of J increases monotonically with Re, whereas the viscous component (Jv) of J decreases monotonically with Re. The Re value corresponding to equal inertial and viscous components of J (named as the transitional point Re) decreases when E increases, and such a transitional point Re should be closely related to the critical Reynolds number Rec, although a rigorous theoretical proof is not yet available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
215.
216.
Within the framework of our discontinuous deformation analysis for rock failure algorithm, this paper presents a two‐dimensional coupled hydromechanical discontinuum model for simulating the rock hydraulic fracturing process. In the proposed approach, based on the generated joint network, the calculation of fluid mechanics is performed first to obtain the seepage pressure near the tips of existing cracks, and then the fluid pressure is treated as linearly distributed loads on corresponding block boundaries. The contribution of the hydraulic pressure to the initiation/propagation of the cracks is considered by adding the components of these blocks into the force matrix of the global equilibrium equation. Finally, failure criteria are applied at the crack tips to determine the occurrence of cracking events. Several verification examples are simulated, and the results show that this newly proposed numerical model can simulate the hydraulic fracturing process correctly and effectively. Although the numerical and experimental verifications focus on one unique preexisting crack, because of the capability of discontinuous deformation analysis in simulating block‐like structures, the proposed approach is capable of modeling rock hydraulic fracturing processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
217.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   
218.
219.
区域生态风险评价是对各种生态风险及环境问题进行评价和管理的重要手段。针对雅安地震灾区特殊的自然地理及生态环境特征,选取芦山县为研究对象,采用遥感、GIS及SPSS统计分析的方法,通过风险源、风险受体、暴露和易损性分析,建立生态风险综合评价模型,划分生态风险区类型,进而提出生态风险管理对策。结果表明:1)微度和低度生态风险区集中分布在高海拔的森林及草地生态系统,该区生物多样性丰富,抗干扰能力较强,地质灾害及人类活动影响较小;2)中度和高度生态风险区具有沿农田及建设用地生态系统集聚分布的特征,该区地质灾害频繁,地壳活动性较强,生态系统抵抗灾害的能力较差。研究结果可为地震灾区防御、规避风险及安全选址提供科学依据。  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号