首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261501篇
  免费   5960篇
  国内免费   4150篇
测绘学   7320篇
大气科学   19832篇
地球物理   55459篇
地质学   91481篇
海洋学   22043篇
天文学   55563篇
综合类   1411篇
自然地理   18502篇
  2021年   2384篇
  2020年   2777篇
  2019年   3054篇
  2018年   4022篇
  2017年   3697篇
  2016年   6085篇
  2015年   4426篇
  2014年   7159篇
  2013年   14445篇
  2012年   6855篇
  2011年   8310篇
  2010年   7297篇
  2009年   9924篇
  2008年   8730篇
  2007年   8240篇
  2006年   9823篇
  2005年   7838篇
  2004年   7783篇
  2003年   7275篇
  2002年   6885篇
  2001年   6155篇
  2000年   6080篇
  1999年   5349篇
  1998年   5343篇
  1997年   5153篇
  1996年   4794篇
  1995年   4530篇
  1994年   4102篇
  1993年   3826篇
  1992年   3583篇
  1991年   3579篇
  1990年   3663篇
  1989年   3369篇
  1988年   3198篇
  1987年   3731篇
  1986年   3263篇
  1985年   4141篇
  1984年   4654篇
  1983年   4324篇
  1982年   4242篇
  1981年   3867篇
  1980年   3617篇
  1979年   3441篇
  1978年   3448篇
  1977年   3233篇
  1976年   2974篇
  1975年   2909篇
  1974年   2869篇
  1973年   3068篇
  1972年   1991篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Magnesium‐rich spinel assemblages occur in the two lunar vitric breccia meteorites—Dhofar (Dho) 1528 and Graves Nunataks (GRA) 06157. Dho 1528 contains up to ~0.7 mm cumulate Mg‐rich spinel crystals associated with Mg‐rich olivine, Mg‐ and Al‐rich pyroxene, plagioclase, and rare cordierite. Using thermodynamic calculations of these mineral assemblages, we constrain equilibration depths and discuss an origin of these lithologies in the upper mantle of the Moon. In contrast, small, 10 to 20 μm spinel phenocryst assemblages in glassy melt rock clasts in Dho 1528 and GRA 06157 formed from the impact melting of Mg‐rich rocks. Some of these spinel phenocrysts match compositional constraints for spinel associated with “pink spinel anorthosites” inferred from remote sensing data. However, such spinel phenocrysts in meteorites and Apollo samples are typically associated with significant amounts of olivine ± pyroxene that exceed the compositional constraints for pink spinel anorthosites. We conclude that the remotely sensed “pink spinel anorthosites” have not been observed in the collections of lunar rocks. Moreover, we discuss impact‐excavation scenarios for the spinel‐bearing assemblages in Dhofar 1528 and compare the bulk rock composition of Dho 1528 to strikingly similar compositions of Luna 20 samples that contain ejecta from the Crisium impact basin.  相似文献   
22.
Some of the defining characteristics of the IIG iron meteorite group are their high bulk P contents and massive, coarse schreibersite, which have been calculated to make up roughly 11–14 wt% of each specimen. In this study, we produced two data sets to investigate the formation of schreibersites in IIG irons: measurements of trace elements in the IIG iron meteorite Twannberg and experimental determinations of trace element partitioning into schreibersite. The schreibersite‐bearing experiments were conducted with schreibersite in equilibrium with a P‐rich melt and with bulk Ni contents ranging from 0 to 40 wt%. The partitioning behavior for the 20 elements measured in this study did not vary with Ni content. Comparison of the Twannberg measurements with the experimental results required a correction factor to account for the fact that the experiments were conducted in a simplified system that did not contain a solid metal phase. Previously determined solid metal/P‐rich melt partition coefficients were applied to infer schreibersite/solid metal partitioning behavior from the experiments, and once this correction was applied, the two data sets showed broad similarities between the schreibersite/solid metal distribution of elements. However, there were also differences noted, in particular between the Ni and P contents of the solid metal relative to the schreibersite inferred from the experiments compared to that measured in the Twannberg sample. These differences support previous interpretations that subsolidus schreibersite evolution has strongly influenced the Ni and P content now present in the solid metal phase of IIG irons. Quantitative attempts to match the IIG solid metal composition to that of late‐stage IIAB irons through subsolidus schreibersite growth were not successful, but qualitatively, this study corroborates the striking similarities between the IIAB and IIG groups, which are highly suggestive of a possible genetic link between the groups as has been previously proposed.  相似文献   
23.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
24.
Izvestiya, Atmospheric and Oceanic Physics - The phase shift between changes in the global surface temperature Tg and atmospheric CO2 content $${{q}_{{{\text{C}}{{{\text{O}}}_{2}}}}}$$ has been...  相似文献   
25.
Natural Resources Research - Recognition of reservoir quality is an important objective in reservoir characterization process. By definition, the quality of a reservoir is described by its...  相似文献   
26.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
27.
28.
Results obtained from simulating the propagation of infrasonic waves from the Chelyabinsk meteoroid explosion observed on February 15, 2013, are given. The pseudodifferential parabolic equation (PDPE) method has been used for calculations. Data on infrasonic waves recorded at the IS31 station (Aktyubinsk, Kazakhstan), located 542.7 km from the likely location of the explosion, have been analyzed. Six infrasonic arrivals (isolated clearly defined pulse signals) were recorded. It is shown that the first “fast” arrival (F) corresponds to the propagation of infrasound in a surface acoustic waveguide. The rest of the arrivals (T1–T5) are thermospheric. The agreement between the results of calculations based on the PDPE method and experimental data is satisfactory. The energy E of the explosion has been estimated using two methods. One of these methods is based on the law of conservation of the acoustic pulse I, which is a product of the wave profile area S/2 of the signal under analysis and the distance to its source E I [kt] = 1.38 × 10–10 (I [kg/s])1.482. The other method is based on the relation between the energy of explosion and the dominant period T of recorded signal E T [kt] = 1.02 × (T [s]2/σ)3/2, where σ is the dimensionless distance determining the degree of nonlinear effects during the propagation of sound along ray trajectories. According to the data, the explosion energy E I,T ranges from 1.87 to 32 kt TNT.  相似文献   
29.
Geomagnetism and Aeronomy - Based on data from long-term observations at two geophysical observatories, Borok and College, distantly spaced in latitude and longitude, the results of remote...  相似文献   
30.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号