首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2790篇
  免费   54篇
  国内免费   30篇
测绘学   258篇
大气科学   173篇
地球物理   567篇
地质学   1026篇
海洋学   65篇
天文学   656篇
综合类   24篇
自然地理   105篇
  2022年   26篇
  2021年   31篇
  2020年   37篇
  2019年   31篇
  2018年   152篇
  2017年   123篇
  2016年   170篇
  2015年   83篇
  2014年   145篇
  2013年   165篇
  2012年   124篇
  2011年   128篇
  2010年   110篇
  2009年   131篇
  2008年   105篇
  2007年   73篇
  2006年   70篇
  2005年   61篇
  2004年   41篇
  2003年   42篇
  2002年   54篇
  2001年   38篇
  2000年   39篇
  1999年   47篇
  1998年   36篇
  1997年   38篇
  1996年   28篇
  1995年   28篇
  1994年   36篇
  1993年   30篇
  1992年   31篇
  1991年   41篇
  1990年   28篇
  1989年   41篇
  1988年   48篇
  1987年   52篇
  1986年   36篇
  1985年   35篇
  1984年   61篇
  1983年   58篇
  1982年   34篇
  1981年   21篇
  1980年   27篇
  1979年   16篇
  1978年   19篇
  1976年   12篇
  1974年   11篇
  1973年   12篇
  1972年   14篇
  1971年   10篇
排序方式: 共有2874条查询结果,搜索用时 15 毫秒
91.
The Hammond Hill Research Catchment (HH) is a small (120 ha), temperate, second order tributary to Six Mile Creek, Cayuga Lake, and the Great Lakes (42.42°, −76.32°). The HH has been monitored since January 2017 for the purpose of understanding how recent infiltration mixes with antecedent soil water on hillslope forest floors and the spatial and temporal patterns of Root Water Uptake (RWU) by temperate northeastern US tree species (eastern hemlock [Tsuga canadensis], American beech [Fagus grandifolia], and sugar maple [Acer saccharum]). These data are informing us about the hydrologic consequences of anticipated tree species composition change and supporting the development of more refined ecohydrological models. The glaciated catchment is underlain by a shallow confining siltstone layer (1–1.5 m depth) and densely covered with an approximately 60 year old regrowth mixed species forest of hemlock, beech, and other deciduous tree species common to the northeastern US. Current datasets from the HH include precipitation snow water equivalent, discharge, and associated isotopic water compositions, δ2H & δ18O. Measurements of (top 10 cm) soil water content, as well as bulk soil water and hemlock and beech xylem isotopic compositions are made at several locations across a topographic wetness gradient. The near-term role of the HH is to support an understanding of the environmental and ecological drivers of plant RWU competition. All data from the HH are publicly available.  相似文献   
92.
93.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
94.
95.
The concentration of dissolved and particulate Re have been measured in the Narmada, Tapi and the Mandovi estuaries in the Arabian Sea and the Hooghly estuary in the Bay of Bengal. Re concentration in water and particulate matter of these estuaries is highly variable. Re in river waters analysed varies from 1 to 41 pmol/kg, the lowest in the Mandovi and the highest in the Mahi river. Re concentrations in the rivers analysed except in the Mandovi river are higher than the average global riverine Re concentration of 2.1 pmol/kg. Based on this study and the available data, the contemporary global annual flux of dissolved riverine Re is estimated to be ~ 350 × 103 mol with an average concentration of ~ 9.2 pmol/kg, much higher than the earlier estimates. Residence time of Re in the oceans based on this estimate is 175,000 years, ~ 4 times lower compared to earlier estimates. Re behaves conservatively in all the estuaries studied. Re concentrations of seawater in the Bay of Bengal and in the Arabian Sea, estimated from the data of the Hooghly and the Mandovi estuaries respectively are ~ 40 pmol/kg, similar to the open ocean Re values of the Arabian Sea measured in this study and the values reported for in other oceanic regions. However, the dissolved Re in the Gulf of Cambay is 2 to 5 times higher, consistent with the high Re measured in the Mahi estuary and in the coastal waters of the Gulf of Cambay. The source of high Re in the Gulf of Cambay seems to be anthropogenic, measurements of Re in rivers and industrial waste waters draining into the Gulf supply amount to ~ 2300 mol of Re annually. This anthropogenic supply coupled with high residence time of water in the Gulf contribute to its high Re. Re concentration in suspended sediments of the Narmada estuary varies from 1 to 2 pmol/g, and does not show any discernible trend with salinity.The contemporary global riverine Re supply to the oceans estimated in this study is ~ 2–4 times higher compared to its removal in the reducing (anoxic/suboxic) sediments, indicating non-steady state of Re in the ocean. High dissolved riverine Re flux coupled with high Re content in the Gulf of Cambay highlights the need of a detailed study of Re in the various global rivers and in oceans including coastal regions and semi enclosed basins of the world to understand its behaviour in various reservoirs and to constrain the residence time of Re in the ocean.  相似文献   
96.
In opencast mining operation, the stability of waste materials stands at high priority from the safety and economic perspective. Poor management of overburden (OB) dump results the instability of slope in an opencast mine. The present paper deals with the stability analysis of dump material of an opencast coal mine at Talcher coal field, Angul district, Odisha, by means of different geotechnical parameters and mineralogical composition affecting the dump slope. The prolonged rainfall in the mining area causes dump failure and loss of valuable life and property. A recent dump failure that occurred in 2013 at Basundhara mines of Mahanadi Coalfields Limited (MCL), Odisha, took 14 lives, and created problems for the mining industry. Most of the dump failure that occurs in the study area are mainly due to increase in pore water pressure as a result of rainfall infiltration. The stability of the waste dump was investigated using the limit equilibrium analysis to suggest an economical, sustainable and safe disposal of the dump in the study area.  相似文献   
97.
Felsic magmatism in the southern part of Himachal Higher Himalaya is constituted by Neoproterozoic granite gneiss (GGn), Early Palaeozoic granitoids (EPG) and Tertiary tourmaline-bearing leucogranite (TLg). Magnetic susceptibility values (<3 ×10?3 SI), molar Al2 O 3/(CaO + Na2 O + K 2O) (≥1.1), mineral assemblage (bt–ms–pl–kf–qtz ± tur ± ap), and the presence of normative corundum relate these granitoids to peraluminous S-type, ilmenite series (reduced type) granites formed in a syncollisional tectonic setting. Plagioclase from GGn (An10–An31) and EPG (An15–An33) represents oligoclase to andesine and TLg (An2–An15) represents albite to oligoclase, whereas compositional ranges of K-feldspar are more-or-less similar (Or88 to Or95 in GGn, Or86 to Or97 in EPG and Or87 to Or94 in TLg). Biotites in GGn (Mg/Mg + Fet= 0.34–0.45), EPG (Mg/Mg + Fet= 0.27–0.47), and TLg (Mg/Mg + Fet= 0.25–0.30) are ferribiotites enriched in siderophyllite, which stabilised between FMQ and HM buffers and are characterised by dominant 3Fe\(\rightleftharpoons \)2Al, 3Mg\(\rightleftharpoons \)2Al substitutions typical of peraluminous (S-type), reducing felsic melts. Muscovite in GGn (Mg/Mg + Fet=0.58–0.66), EPG (Mg/Mg + Fet=0.31?0.59), and TLg (Mg/Mg + Fet=0.29–0.42) represent celadonite and paragonite solid solutions, and the tourmaline from EPG and TLg belongs to the schorl-elbaite series, which are characteristics of peraluminous, Li-poor, biotite-tourmaline granites. Geochemical features reveal that the GGn and EPG precursor melts were most likely derived from melting of biotite-rich metapelite and metagraywacke sources, whereas TLg melt appears to have formed from biotite-muscovite rich metapelite and metagraywacke sources. Major and trace elements modelling suggest that the GGn, EPG and TLg parental melts have experienced low degrees (~13, ~17 and ~13%, respectively) of kf–pl–bt fractionation, respectively, subsequent to partial melting. The GGn and EPG melts are the results of a pre-Himalayan, syn-collisional Pan-African felsic magmatic event, whereas the TLg is a magmatic product of Himalayan collision tectonics.  相似文献   
98.
Precipitation in solid form, i.e., snow, during winter season over the Western Himalayas (WH) leads to the build-up of seasonal snow cover. Seasonal snow cover build-up (snow cover depth and duration) largely depends on atmospheric variables such as temperature, precipitation, radiation, wind, etc. Integrated (combined) influence of atmospheric variables on seasonal snow cover gets reflected in terms of spatial and temporal variability in seasonal snow cover build-up pattern. Hence spatial and temporal variability of seasonal snow cover build-up can serve as a good indicator of climate change in high altitude mountainous regions like the WH. Consistent seasonal snow cover depth and duration, delay days and early melt days of consistent seasonal snow cover at 11 stations spread across different mountain ranges over the WH were analyzed. Mean, maximum and percentiles (25th, 50th, 75th, 90th and 95th) of consistent seasonal snow cover depth and duration show decline over the WH in the recent past 2–3 decades. Consistent seasonal snow cover is found to melt early and snow cover build-up pattern is found to show changes over the WH. Decline in consistent seasonal snow cover depth, duration and changing snow cover build-up pattern over the WH in recent decades indicate that WH has undergone considerable climate change and winter weather patterns are changing in the WH.  相似文献   
99.
The hybrid two-way coupled 3DEnsVar assimilation system was tested with the NCMRWF global data assimilation forecasting system. At present, this system consists of T574L64 deterministic model and the grid-point statistical interpolation analysis scheme. In this experiment, the analysis system is modified with a two-way coupling with an 80 member Ensemble Kalman Filter of T254L64 resolution and runs are carried out in parallel to the operational system for the Indian summer monsoon season (June–September) for the year 2015 to study its impact. Both the assimilation systems are based on NCEP GFS system. It is found that hybrid assimilation marginally improved the quality of the forecasts of all variables over the deterministic 3D Var system, in terms of statistical skill scores and also in terms of circulation features. The impact of the hybrid system in prediction of extreme rainfall and cyclone track is discussed.  相似文献   
100.
In 2013, Indian summer monsoon witnessed a very heavy rainfall event (>30 cm/day) over Uttarakhand in north India, claiming more than 5000 lives and property damage worth approximately 40 billion USD. This event was associated with the interaction of two synoptic systems, i.e., intensified subtropical westerly trough over north India and north-westward moving monsoon depression formed over the Bay of Bengal. The event had occurred over highly variable terrain and land surface characteristics. Although global models predicted the large scale event, they failed to predict realistic location, timing, amount, intensity and distribution of rainfall over the region. The goal of this study is to assess the impact of land state conditions in simulating this severe event using a high resolution mesoscale model. The land conditions such as multi-layer soil moisture and soil temperature fields were generated from High Resolution Land Data Assimilation (HRLDAS) modelling system. Two experiments were conducted namely, (1) CNTL (Control, without land data assimilation) and (2) LDAS, with land data assimilation (i.e., with HRLDAS-based soil moisture and temperature fields) using Weather Research and Forecasting (WRF) modelling system. Initial soil moisture correlation and root mean square error for LDAS is 0.73 and 0.05, whereas for CNTL it is 0.63 and 0.053 respectively, with a stronger heat low in LDAS. The differences in wind and moisture transport in LDAS favoured increased moisture transport from Arabian Sea through a convectively unstable region embedded within two low pressure centers over Arabian Sea and Bay of Bengal. The improvement in rainfall is significantly correlated to the persistent generation of potential vorticity (PV) in LDAS. Further, PV tendency analysis confirmed that the increased generation of PV is due to the enhanced horizontal PV advection component rather than the diabatic heating terms due to modified flow fields. These results suggest that, two different synoptic systems merged by the strong interaction of moving PV columns resulted in the strengthening and further amplification of the system over the region in LDAS. This study highlights the importance of better representation of the land surface fields for improved prediction of localized anomalous weather event over India.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号