首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   8篇
  国内免费   1篇
测绘学   4篇
大气科学   7篇
地球物理   35篇
地质学   85篇
海洋学   22篇
天文学   26篇
综合类   1篇
自然地理   7篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   9篇
  2017年   6篇
  2016年   11篇
  2015年   7篇
  2014年   15篇
  2013年   14篇
  2012年   8篇
  2011年   10篇
  2010年   16篇
  2009年   16篇
  2008年   10篇
  2007年   13篇
  2006年   5篇
  2005年   9篇
  2004年   4篇
  2002年   3篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
111.
Remnants of a fossil continent–ocean transition similar to that of the modern non-volcanic continental margins are preserved in the Jurassic External Liguride units. They consist of fertile lherzolites of subcontinental origin, MOR-type basalts and rare gabbroic intrusives, together with continental crust bodies exhumed during the rifting phases preceding the oceanization. The gabbroic rocks include troctolites, (olivine) gabbros, Fe–Ti oxide-bearing gabbros and diorites. Trace element and Nd isotope compositions indicate that these rocks were derived from N-MORB melts variably evolved through fractional crystallisation. In the gabbroic rocks, high-temperature ( 900 °C) shearing along ductile shear zones is locally overprinted by amphibolite-facies recrystallization (T  650 °C), which was most likely assisted by seawater-derived fluids. Basalts crop out as lava flows and as dykes crosscutting mantle lherzolites and gabbroic rocks. They display nearly flat REE patterns and high Y/Nb values (5–14), similar to modern N-MORB. Basalts are also characterised by weak Zr enrichment relative to neighbouring REE (Zr/Zr = 1.1–1.7) and high (Sm/Yb)DM ratios (1.5–1.8). Their Nd isotope compositions are close to typical depleted mantle (initial Nd = +7.6 to + 9.4). The geochemical features of parental melts of basaltic and gabbroic rocks may be attributed to melting of a MORB-type asthenospheric source. Trace element modelling shows that low-degree (≤ 6%) fractional melting of a depleted spinel peridotite cannot account for the elevated Sm/Yb ratios of basalts. Low-degree melting of a mixed source of spinel peridotite with small amounts of garnet pyroxenite has been proposed to explain the trace element signature of basalts.  相似文献   
112.
113.
Ground deformation affecting the Umbria region (central Italy) in the 9-year period from 1992 to 2000 was investigated through multi-temporal Differential Synthetic Aperture Radar Interferometry (DInSAR). For the purpose, the Small BAseline Subset (SBAS) technique was adopted, which allows studying the temporal evolution of the detected deformation at two spatial scales: a low-resolution (regional) scale, and a full-resolution (local) scale. For the analysis, SAR data acquired by the European Remote Sensing (ERS-1/2) satellites along ascending and descending orbits were used. The detected deformation was analysed to investigate its relevance to geophysical, geomorphologic, and human-induced processes that may result in hazardous conditions to the population of Umbria. Low-resolution deformation data were used to: (i) determine the amount of displacement caused by the Umbria-Marche earthquake sequence from September 1997 to April 1998 in the Foligno area, (ii) determine the number and percentage of the known landslides that can be monitored by the DInSAR technology in the investigated area, and (iii) identify and measure subsidence induced by exploitation of a confined aquifer in the Valle Umbra. Results indicate that earthquakes moved through the Foligno area westwards up to 3.9 cm and with an uplift reaching 1.7 cm. Intersection in a GIS of the low-resolution deformation maps with a detailed landslide inventory map allowed the determination that the portion of landslides that can be monitored by the SBAS-DInSAR technique in Umbria ranges from 2.7% to 3.4%, and the percentage of the total landslide area ranges from 10.4% to 12.8%. In the Valle Umbra, a dependency was found between the time and the amount of detected ground deformation, and the record of water withdrawal. The full-resolution deformation data were used to investigate the movement of the Ivancich landslide, in the Assisi Municipality. Joint analysis of the spatial and the temporal characteristics of the ground displacement allowed the formulation of a hypothesis on the landslide geometry and deformation pattern.  相似文献   
114.
For the first time, vertical fluxes of mineral dust measured by Eddy Covariance in two desert sites of Northern Asia have been used to test the performances of a wind erosion model in the field. Soil parameters required by the model were obtained through field and laboratory determinations. Model predictions and direct measurements have been compared. The main finding was that the direction of the horizontal wind relative to the orientation of nebkhas played a crucial role in determining the emission of particles in one of the investigated sites. Being unable to simulate such interaction, the model generally overestimated the actual emission. It provided, instead, reliable predictions (r2 = 0·87) when the wind direction was suitable in detaching loose erodible elements placed on nebkhas thanks to their normal orientation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
115.
A new algorithm is presented for the integrated 2-D inversion of seismic traveltime and gravity data. The algorithm adopts the 'maximum likelihood' regularization scheme. We construct a 'probability density function' which includes three kinds of information: information derived from gravity measurements; information derived from the seismic traveltime inversion procedure applied to the model; and information on the physical correlation among the density and the velocity parameters. We assume a linear relation between density and velocity, which can be node-dependent; that is, we can choose different relationships for different parts of the velocity–density grid. In addition, our procedure allows us to consider a covariance matrix related to the error propagation in linking density to velocity. We use seismic data to estimate starting velocity values and the position of boundary nodes. Subsequently, the sequential integrated inversion (SII) optimizes the layer velocities and densities for our models. The procedure is applicable, as an additional step, to any type of seismic tomographic inversion.
We illustrate the method by comparing the velocity models recovered from a standard seismic traveltime inversion with those retrieved using our algorithm. The inversion of synthetic data calculated for a 2-D isotropic, laterally inhomogeneous model shows the stability and accuracy of this procedure, demonstrates the improvements to the recovery of true velocity anomalies, and proves that this technique can efficiently overcome some of the limitations of both gravity and seismic traveltime inversions, when they are used independently.
An interpretation of field data from the 1994 Vesuvius test experiment is also presented. At depths down to 4.5 km, the model retrieved after a SII shows a more detailed structure than the model obtained from an interpretation of seismic traveltime only, and yields additional information for a further study of the area.  相似文献   
116.
Unreinforced masonry infills are widely used in many parts of the world and it is common practice for seismic design to use simplified methods that usually do not take into account the interaction between the infill and the structure. Starting from the 1950s, many researchers have investigated the lateral response of masonry infills focusing on several different topics. The scientific interest on masonry infills is continuously raising due to the unsatisfactory seismic response of the infilled frame structures observed during post-event inspections and to the difficulty to contrive a widely scientifically and practical recognized solution. Although some modern codes consider the presence of infills with some specifications to prevent damage in the masonry panels and global and local effects on the structure, an effective evaluation of these detrimental effects has not been achieved yet. Within this paper, a FEM simulation of in-plane pseudo-static cyclic tests on a RC frame specimen infilled with unreinforced Autoclaved Aerated Concrete (AAC) masonry infill has been performed in order to study accurately the influence and the interaction of the infill with the RC structure. The experimental results performed by Calvi and Bolognini (J Earthq Eng 5:153–185, 1999), and Penna and Calvi (Campagna sperimentale su telai in c.a. con tamponamenti in Gasbeton (AAC) con diverse soluzioni di rinforzo” (in Italian), 2006) on one-bay one-storey full scale specimens are taken as reference. Non-linear static analyses using a “meso-modelling” approach have been carried out. The masonry used in the model has been calibrated according to tests of mechanical characterization and to in-plane cyclic tests on load-bearing AAC masonry conducted by Costa et al. (J Earthq Eng 15:1–31, 2011). The analyses performed have allowed to investigate the local effects on the frame and, in particular, the changes in the moment and shear demands on the RC elements due to the presence of the AAC infill in comparison with the ones in the bare structure, and to estimate the thrust and the contact length activated by the infill on the frame.  相似文献   
117.
In this paper we report progresses in the realization of self-standing bent crystals, which are suitable as optical elements for Laue lenses, i.e. for optic to focus hard X-rays in the 100–1000 keV energy range. The curvature of the crystals is a key factor to enhance diffraction efficiency and energy bandpass for such an optic. In particular, two bent crystals featuring a thickness of 5 mm, made of Si and Ge respectively, were produced at the Sensor and Semiconductor Laboratory in Ferrara, Italy. The crystals were bent through the application of a carbon fibre composite. This proved to be a relatively low cost method for crystal bending, suitable for mass production. The manufactured samples were characterised via optical interferometry, and showed a fairly uniform curvature. Finally, the samples were tested exploiting hard X-ray diffraction at the ID11 facility of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. A careful analysis of the experimental data highlighted that the samples feature large energy bandpass, wide geometrical acceptance for incoming hard X-rays, and high diffraction efficiency. We therefore conclude that such self-standing crystals are good candidates as Laue lens components for astrophysics applications.  相似文献   
118.
The hydrodispersive properties of porous sediments are strongly influenced by the heterogeneity at fine scales, which can be modeled by geostatistical simulations. In order to improve the assessment of the properties of three different geostatistical simulation methods (Sequential indicator simulation, SISIM; Transition probability geostatistical simulation, T-PROGS; Multiple point simulation, MPS) a comparison test at different scales was performed for a well-exposed aquifer analogue. In the analysed volume (approximately 30,000?m3) four operative hydrofacies have been recognised: very fine sand and silt, sand, gravelly sand and open framework gravel. Several equiprobable realizations were computed with SISIM, MPS and T-PROGS for a test volume of approximately 400?m3 and for the entire volume, and the different outcomes were compared with visual inspection and connectivity analysis of the very or poorly permeable structures. The comparison of the different simulations shows that the geological model is best reproduced when the simulations are realised separately for each highest rank depositional element and subsequently merged. Moreover, the three methods yield different images of the volume; in particular MPS is efficient in mapping the geometries of the most represented hydrofacies, whereas SISIM and T-PROGS can account for the distribution of the less represented facies.  相似文献   
119.
Response spectrum matching is commonly used to generate ground motions with response spectra matching a scenario target spectrum. There is some debate in the literature about whether spectrum‐matched motions lead to biased structural analysis results. Furthermore, there are no objective, quantitative criteria available for deciding whether a ground motion has been manipulated excessively by spectrum matching, and whether large modification may also lead to bias. This study investigates both of these issues by presenting the results of structural analysis using two reinforced concrete moment frame models and two earthquake scenarios, with suites of unmatched and matched ground motions. Through comparison with a robust benchmark, it is shown that no significant bias is introduced by spectrum matching. The period range and target damping values for matching are also investigated, and matching up to three times the fundamental period is shown to be beneficial in reducing dispersion in the results. Finally, these analyses were also used to investigate whether large changes in the ground motion lead to biased analysis results. Several potential measures of change are investigated, including those based on peak absolute ground motion, cumulative squared ground motion (absolute or normalized), and input energy into single‐degree‐of‐freedom systems. Although no systematic, statistically significant correlation is found for the analysis results in terms of any of these measures of change, tentative criteria are proposed, which may be used by analysts to aid in the decision of whether to accept or reject a spectrum‐matched motion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
120.
The possibility of communicating with the far side of the Moon is essential for keeping a continuous radio link with lunar orbiting spacecraft, as well as with manned or unmanned surface facilities in locations characterized by poor coverage from Earth. If the exploration and the exploitation of the Moon must be sustainable in the medium/long term, we need to develop the capability to realize and service such facilities at an affordable cost. Minimizing the spacecraft mass and the number of launches is a driving parameter to this end. The aim of this study is to show how Space Manifold Dynamics can be profitably applied in order to launch three small spacecraft onboard the same launch vehicle and send them to different orbits around the Moon with no significant difference in the Delta-V budgets. Internal manifold transfers are considered to minimize also the transfer time. The approach used is the following: we used the linearized solution of the equations of motion in the Circular Restricted Three Body Problem to determine a first–guess state vector associated with the Weak Stability Boundary regions, either around the collinear Lagrangian point L1 or around the Moon. The resulting vector is then used as initial state in a numerical backward-integration sequence that outputs a trajectory on a manifold. The dynamical model used in the numerical integration is four-body and non-circular, i.e. the perturbations of the Sun and the lunar orbital eccentricity are accounted for. The trajectory found in this way is used as the principal segment of the lunar transfer. After separation, with minor maneuvers each satellite is injected into different orbits that lead to ballistic capture around the Moon. Finally, one or more circularization maneuvers are needed in order to achieve the final circular orbits. The whole mission profile, from launch to insertion into the final lunar orbits, is modeled numerically with the commercial software STK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号