首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
大气科学   1篇
地球物理   12篇
地质学   31篇
海洋学   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1988年   1篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
31.
32.
Abstract The Jurassic Tamba accretionary complex is divided into two tectono‐stratigraphic suites (Type I and II nappe groups), which are further divided into six complexes (nappes) each of which is characterized by a rock sequence of Late Paleozoic greenstone/limestone, Permian to Jurassic chert and Jurassic terrigenous clastic rocks. The mode of occurrence of the greenstone is divided into two types. The major basal type occurs as a large coherent slab associated with Permian chert and limestone, constituting the basal part of each complex, and the minor mixed type occurs as fragmented allochthonous greenstone blocks and lenses mixed with chert, limestone and sandstone in the Jurassic mudstone matrix. Most of the basal greenstones have uniform geochemical characteristics, which indicate enriched‐mid‐oceanic ridge basalt (MORB) affinity. Their geochemical compositions are akin to the reported Permo‐Carboniferous and Triassic oceanic plateau basalts. Mixed greenstones are divided into two petrochemical types: (i) tholeiitic basalt with normal‐MORB affinity, which is predominant in the uppermost complex of the Type II suite (upper nappe group); and (ii) tholeiitic and alkalic basalts of oceanic island or seamount origin, which are common in all complexes of the Tamba Belt. Geochemical characteristics of the greenstones thus vary in accordance with their occurrences and the structural units to which they belong. This relationship reflects the difference in topographic relief and crustal thickness of the accreted oceanic edifices – the remnants of thick oceanic plateau crust tended to accrete to the continental margin as a large basal greenstone body, whereas thin normal oceanic crust with small seamounts or oceanic islands accreted as mixed greenstones because of their mechanical weakness. The Type II suite (upper nappe group) contains the basal and mixed greenstones, whereas the Type I suite (lower nappe group) includes only mixed greenstones. This distinction may reflect the temporal change of subducting edifices from a thick oceanic plateau to a thin normal oceanic crust, and suggests that the accretion of a large oceanic plateau may be responsible for building accretionary complexes with thick basal greenstones slabs.  相似文献   
33.
Yuji  Ichiyama  Akira  Ishiwatari  Kazuto  Koizumi  Yoshito  Ishida  Sumiaki  Machi 《Island Arc》2007,16(3):493-503
Abstract   Permian basalt showing typical spinifex texture with >10 cm-long olivine pseudomorphs was discovered from the Jurassic Tamba accretionary complex in southwest Japan. The spinifex basalt occurs as a river boulder accompanied by many ferropicritic boulders in a Permian chert-greenstone unit. Groundmass of this rock is holocrystalline, suggesting a thick lava or sill for its provenance. Minor kaersutite in the groundmass indicates a hydrous magma. The spinifex basalt, in common with the associated ferropicritic rocks, is characterized by high high field strength element (HFSE) contents (e.g. Nb = 62 ppm and Zr = 254 ppm) and high-HFSE ratios (Al2O3/TiO2 = 3.9, Nb/Zr = 0.24 and Zr/Y = 6.4) unlike typical komatiites. The spinifex basalt and ferropicrite might represent the upper fractionated melt and the lower olivine-rich cumulate, respectively, of a single ultramafic sill (or lava) as reported from the early Proterozoic Pechenga Series in Kola Peninsula. Their parental magma might have been produced by hydrous melting of a mantle plume that was dosed with Fe- and HFSE-rich garnet pyroxenite. The spinifex basalt is an evidence for the Pechenga-type ferropicritic volcanism taken place in a Permian oceanic plateau, which accreted to the Asian continental margin as greenstone slices in Jurassic time.  相似文献   
34.
 We report a novel type of layering structure in igneous rocks. The layering structure in the Ogi picrite sill in Sado Island, Japan, is spatially periodic, and appears to be caused by the variation in vesicle volume fraction. The gas phase forming the vesicles apparently exsolved from the interstitial melt at the final stage of solidification of the magma body. We call this type of layering caused by periodic vesiculation in the solidifying magma body "vesicle layering." The presence of vesicle layering in other basic igneous bodies (pillow lava at Ogi and dolerite sill at Atsumi, Japan) implies that it may be a fairly common igneous feature. The width of individual layers slightly, but regularly, increases with distance from the upper contact. The layering plane is perpendicular to the long axes of columnar joints, regardless of gravitational direction, suggesting that the formation of vesicles is mainly controlled by the temperature distribution in the cooling magma body. We propose a model of formation of vesicle layering which is basically the same as that for Liesegang rings. The interplay between the diffusion of heat and magmatic volatiles in melt, and the sudden vesiculation upon supersaturation, both play important roles. Received: 15 February 1996 / Accepted: 24 June 1996  相似文献   
35.
Kerogen was isolated from a marine sediment from Tanner Basin, offshore California. Samples of the kerogen were heated under an inert atmosphere at various temperatures and times. The heated and unheated kerogens were subjected to alkaline potassium permanganate oxidation followed by GC/ MS analysis of the products. The kerogens yielded primarily aliphatic C2–C14 α,ω-dicarboxylic acids and benzene mono-to-pentacarboxylic acids. Yields of aliphatic dicarboxylic acids from kerogen decreased with increasing thermal alteration. Yields of benzenecarboxylic acids increased steadily with increasing thermal alteration. The data support the concept that thermal maturation during natural burial of this type of kerogen results in the generation of aliphatic hydrocarbons from an increasingly aromatic residue.  相似文献   
36.
Three fractions of organic matter: lipid (benzene:methanol-extractable), humic acid (alkali-extractable) and kerogen (residue) were extracted from a young marine sediment (Tanner Basin, offshore southern California) and heated for different times (5–116 hr) and temperatures (150°–410°C). The volatile (gases) and liquid products, as well as residual material, were then analyzed. On a weight basis, the lipid fraction produced 58% of the total identified n-alkanes, the kerogen fraction 41%, and the humic acid <1%. Whereas n-alkanes produced from lipid show a CPI > 1.0, those produced by thermal alteration of kerogen display a CPI < 1.0. The volatiles produced by heating the lipid and humic acid fractions were largely CO2 and water, whereas those produced from heated kerogen also included methane, hydrogen gas and small amounts of C2–C4 hydrocarbons. A mechanism for hydrocarbon production due to the thermal alteration of organic constituents of marine sediment is discussed.  相似文献   
37.
Abstract The Permian ophiolite emplaced in the Yakuno area, Kyoto Prefecture, consists of metavolcanic sequences, metagabbro and a troctolitic intrusion. The metavolcanics are associated with thick mudstone through a contact that shows the flowage of lava over unconsolidated mud layers on the sea floor. The metavolcanics and metagabbro have rare earth element (REE) patterns that are similar to enriched (E)‐ and transitional (T)‐types ([La/Yb]N = 0.77–11.2) of mid‐oceanic ridge basalts (MORB), whereas their Nb/La ratios (0.40–1.20) are as low as those of back‐arc basin basalts (BABB). Cr‐spinels in the metavolcanic rocks have Cr? of 40–73 and an Fe3+? of 9–24, numbers which are comparable to the values of BABB. These lines of evidence suggest that the Yakuno ophiolite originated more likely from an early stage back‐arc basin rather than from an oceanic plateau, as has been suggested by some researchers. The troctolitic body that intrudes as a 0.5‐km long lens in the metagabbro is composed of troctolite, olivine gabbro and microgabbro. The troctolite is marked by an olivine–plagioclase crystallization sequence, different from the commonly observed olivine–clinopyroxene sequence in other mafic/ultramafic cumulates of the Yakuno ophiolite. The microgabbro, with a composition close to that of the parental magma of the troctolite, is depleted in light REE ([La/Yb]N = 0.18–0.55) so that it has an REE pattern that mimics normal (N)‐type MORB. The interstitial clinopyroxene of the troctolite has highly variable TiO2 contents (0.2–1.4 wt%), which is interpreted to result from postcumulus crystallization of heterogeneous intercumulus melts. The troctolitic intrusion may represent a late stage intrusion that formed in an off‐ridge environment during sea floor spreading of the back‐arc basin. The geochemical variation observed in the Yakuno ophiolite, ranging from N‐ to E‐MORB affinities, reflects the changes in both mantle source compositions and processes involved in magma generation during the evolution of the back‐arc basin.  相似文献   
38.
Dunites, peridotites, olivine and spinel pyroxenites, and metagabbroids have been described in the tectonic blocks of the Pekul’ney complex of the central Chukchi Peninsula together with garnet-hornblende-clinopyroxene and zoisite (clinozoisite)-garnet-hornblende rocks, which are indicative of high-pressure complexes. However, the interpretations of previous researchers on the composition, structure, setting, and processes of formation of this rock association are highly controversial. The petrographic and mineralogical results reported in this paper indicate that the blocks of the complex host bodies of cumulate ultramafics among metamorphic rocks. These relationships were supported by the finding of xenoliths and xenocrysts of metamorphic rocks in the ultramafics. The metamorphic country rocks are lower crustal amphibolites and schists with peak metamorphic parameters corresponding to the high-pressure portion of the epidoteamphibolite facies (610–680°C and 9–14 kbar). All the varieties of ultramafic rocks studied in the blocks of the complex are assigned to a single cumulate series (from dunite to clinozoisite-garnet hornblendite), and the compositions of their primary minerals show regular correlations similar to crystallization differentiation trends. Specific features of the ultramafics of the Pekul’ney complex are the early crystallization of hornblende (which is present already in peridotites), wide range of garnet crystallization (associating with clinopyroxene, ceylonite, and hornblende), presence of magmatic clinozoisite in the most evolved assemblages (with garnet, hornblende, and clinopyroxene), and absence of evidence for plagioclase crystallization. Clinopyroxene from the most evolved ultramafic rocks contains more than 15 wt % Al2O3. The classification of the rocks of the complex provides a basis for the interpretation of geological relations between them and the elucidation of the characteristics of the internal structure of the blocks of the complex and bodies of cumulate ultramafic rocks in them.  相似文献   
39.
The Precambrian and lower Paleozoic units of the Japanese basement such as the Hida Oki and South Kitakami terranes have geological affinities with the eastern Asia continent and particularly strong correlation with units of the South China block. There are also indications from units such as the Hitachi metamorphics of the Abukuma terrane and blocks in the Maizuru terrane that some material may have been derived from the North China block. In addition to magmatism, the Japanese region has seen substantial growth due to tectonic accretion. The accreted units dominantly consist of mudstone and sandstone derived from the continental margin with lesser amounts of basaltic rocks associated with siliceous deep ocean sediments and local limestone. Two main phases of accretionary activity and related metamorphism are recorded in the Jurassic Mino–Tanba–Ashio, Chichibu, and North Kitakami terranes and in the Cretaceous to Neogene Shimanto and Sanbagawa terranes. Other accreted material includes ophiolitic sequences, e.g. the Yakuno ophiolite of the Maizuru terrane, the Oeyama ophiolite of the Sangun terrane, and the Hayachine–Miyamori ophiolite of the South Kitakami terrane, and limestone‐capped ocean plateaus such as the Akiyoshi terrane. The ophiolitic units are likely derived from arc and back‐arc basin settings. There has been no continental collision in Japan, meaning the oceanic subduction record is more complete than in convergent orogens seen in intracontinental settings making this a good place to study the geological record of accretion. Hokkaido lacks most of the Paleozoic history recognized in Honshu, Shikoku, Kyushu, and the Ryukyu Islands to the south and its geology reflects the Cenozoic development of two convergent domains with volcanic arcs, their approach, and eventual collision. The Hidaka terrane reveals a cross section through a volcanic arc and the main accretionary complex of the convergent system is represented by the Sorachi–Yezo terrane.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号