首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   7篇
  国内免费   9篇
测绘学   16篇
大气科学   39篇
地球物理   55篇
地质学   82篇
海洋学   80篇
天文学   36篇
综合类   3篇
自然地理   8篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   18篇
  2017年   15篇
  2016年   29篇
  2015年   11篇
  2014年   21篇
  2013年   42篇
  2012年   8篇
  2011年   18篇
  2010年   18篇
  2009年   16篇
  2008年   9篇
  2007年   14篇
  2006年   14篇
  2005年   7篇
  2004年   13篇
  2003年   11篇
  2002年   4篇
  2001年   4篇
  2000年   6篇
  1999年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1987年   2篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有319条查询结果,搜索用时 93 毫秒
101.
The flux rate of cosmic rays incident on the Earth’s upper atmosphere is modulated by the solar wind and the Earth’s magnetic field. The amount of solar wind is not constant due to changes in solar activity in each solar cycle, and hence the level of cosmic ray modulation varies with solar activity. In this context, we have investigated the variability and the relationship of cosmic ray intensity with solar, interplanetary, and geophysical parameters from January 1982 through December 2008. Simultaneous observations have been made to quantify the exact relationship between the cosmic ray intensity and those parameters during the solar maxima and minima, respectively. It is found that the stronger the interplanetary magnetic field, solar wind plasma velocity, and solar wind plasma temperature, the weaker the cosmic ray intensity. Hence, the lowest cosmic ray intensity has good correlations with simultaneous solar parameters, while the highest cosmic ray intensity does not. Our results show that higher solar activity is responsible for a higher geomagnetic effect and vice versa.  相似文献   
102.
Development and propagation of equatorial waves are investigated with the model which includes convection -wave convergence feedback and convection-frictional convergence feedback. Two experiments with an initial Kelvin wave (Exp. K) and with an initial Rossby wave (Exp. R) are carried out. The equatorial waves in Exp. R grow much faster than those in Exp. K. The equatorial waves in both experiments follow zonal (eastward / westward) and meridional (poleward) propagation. The equatorial waves can be partitioned into two meridional modes using Parabolic Cylinder Function. An equa?tor mode denotes a wave component with a positive precipitation center at the equator and an off-equator mode rep?resents a wave component with positive precipitation centers off the equator. The equator mode dominates in Exp. K whereeas the off-equator mode dominates in Exp. R. The rapid wave growth in Exp. R is interpreted by analyzing the eddy available potential energy (EAPE) generation. Stronger off-equator mode in Exp. R obtains more EAPE through convection-frictional convergence feedback which results in more rapid wave growth. The relative vorticity tendency is determined by interactions between Earth’s vorticity and lower-troposphere convergence (divergence effect) and between the meridional gradient and lower-troposphere circulation (beta effect). The eastward and poleward propagation of equatorial waves is a result of the divergence effect, and the westward movement is caused by the beta effect.  相似文献   
103.
Analysis of CTD data from four CREAMS expeditions carried out in summers of 1993–1996 produces distinct T-S relationships for the western and eastern Japan Basin, the Ulleung Basin and the Yamato Basin. T-S characteristics are mainly determined by salinity as it changes its horizontal pattern in three layers, which are divided by isotherms of 5°C and 1°C; upper warm water, intermediate water and deep cold water. Upper warm water is most saline in the Ulleung Basin and the Yamato Basin. Salinity of intermediate water is the highest in the eastern Japan Basin. Deep cold water has the highest salinity in the Japan Basin. T-S curves in the western Japan Basin are characterized by a salinity jump around 1.2–1.4°C in the T-S plane, which was previously found off the east coast of Korea associated with the East Sea Intermediate Water (Cho and Kim, 1994). T-S curves for the Japan Basin undergo a large year-to-year variation for water warmer than 0.6°C, which occupies upper 400 m. It is postulated that the year-to-year variation in the Japan Basin is caused by convective overturning in winter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
104.
We explored the distributional changes in tsunami height along the eastern coast of the Korean Peninsula resulting from virtual and historical tsunami earthquakes. The results confirm significant distributional changes in tsunami height depending on the location and magnitude of earthquakes. We further developed a statistical model to jointly analyse tsunami heights from multiple events, considering the functional relationships; we estimated parameters conveying earthquake characteristics in a Weibull distribution, all within a Bayesian regression framework. We found the proposed model effective and informative for the estimation of tsunami hazard analysis from an earthquake of a given magnitude at a particular location. Specifically, several applications presented in this study showed that the proposed Bayesian approach has the advantage of conveying the uncertainty of the parameter estimates and its substantial effect on estimating tsunami risk.  相似文献   
105.
The contributions of bottom cold water and planetary β-effect to the formation of the East Korean Warm Current (EKWC), the western boundary current in the East/Japan Sea (EJS), were evaluated using an idealized three-dimensional numerical model. The model results suggest that the bottom cold water and, to a lesser extent, the planetary β-effect both contribute to the formation of the EKWC. The cold water functions as the bottom of the upper layer, to control the EKWC via conservation of potential vorticity. It is known that cold waters, such as the North Korean Cold Water and Korea Strait Bottom Cold Water often observed during summer along the southwestern coast of the EJS, originate from the winter convection in the northern area. Observational studies consistently show that the EKWC strengthens in summer when the cold water extends further south along the western boundary.  相似文献   
106.
Since the adoption of the 1969CLC and the 1971FC, the international oil-spill compensation regime has improved compensation for loss and damage caused by tanker oil spills. However, this regime has inherent limitations, such as protracted compensation payments and controversies over the scope and type of economic losses, including environmental damages, and the cost of environmental restoration. Therefore, given large oil-spill incidents, such as the Erika, Prestige, and Hebei Spirit, each government, respectively, has addressed compensation by enacting special laws or establishing domestic programs. This article contains a historical and legal analysis of the Hebei Spirit incident and discusses the limitations and necessary improvements to the international oil-spill compensation regime.  相似文献   
107.
Northeasters are storms that affect the Chesapeake Bay area more frequently, last for longer periods and impact larger areas than hurricanes. Their impacts on storm surge development and the water exchange between estuary and subestuaries (tributaries) in the Bay vary from one event to another. In this study, three different northeaster events were selected based on their tracks when passing through the Chesapeake Bay area. An unstructured grid finite volume model ELCIRC was utilized to examine the response of the water level of the Chesapeake Bay to three selected northeasters, and the barotropic subtidal water exchanges between the tributaries and the estuary in the Bay. Model sensitivity tests were conducted to examine various effects induced by, for example, tide–surge interaction, open boundary condition, river inflow, wetting-and-drying of the low-lying land area and the usage of 2-D or 3-D mode. The results show that excluding tide–surge interaction did not deteriorate the model performance in the lower Bay but it increased the model inaccuracy in the upper Bay and in the tributaries; using radiation boundary condition decreased the sea level variation in the Bay without appropriately specifying incoming wave; excluding wetting-and-drying of low-lying land area reduced the volume flux by approximately 5%; and using 3-D mode generally increased the water level variation in the Bay. The model predicted storm surges well for three northeaster events. Further diagnostic experiments show that the relative importance of the local and remote winds in generating storm surges in the Bay varied with different northeasters. The inverse barometeric effect played an important role in inducing storm surges for two selected northeasters. The interaction between the tributaries and the Bay proper is considerable. The impacts of the remote wind and Bay wind can be much larger than that of the tributary wind and, thus, control the hydrodynamics and mass transport in the tributaries. The Bay wind and tributary wind effects are largely affected by the wind direction and wind phase, and geographic locations of the tributaries in the Bay. The tributary wind can be dominant over the remote wind and Bay wind effects when the local wind stress and barometric pressure changes are large.  相似文献   
108.
A tidal front is a unique structure in coastal waters where tidal mixing is dominant during the summer. Various indexes to define tidal fronts and their dynamics have been reviewed in coastal waters where tidal mixing is dominant. The classification of a front in coastal waters is determined by the freshwater inflow, heating/cooling, Ekman transport, and mixing intensity. The strength of mixing plays an important role, dynamically, in creating a tidal front. The hydrography and circulation around a tidal front are crucial in the biological processes leading to the cross-frontal transport of nutrients and phytoplankton blooms. Physical-biological cooperation is necessary to clearly assess the impact of a tidal front on the distribution of phytoplankton and chlorophyll a in the tidal front area.  相似文献   
109.
The vertical structure of the M2 tidal current in the Yellow Sea is analyzed from data acquired using an acoustic Doppler current profiler. The observed vertical profiles of the M2 tidal current are decomposed into two rotating components of counter-clockwise and clockwise, and restructured using a simple one-point model with a constant vertical eddy viscosity. The analyzed results show that the internal fictional effect dominates the vertical structure of the tidal current in the bottom boundary layer. In the Yellow Sea, the effect of the bottom friction reduces the current speed by about 20–40% and induces the bottom phase advance by about 15–50 minutes. In the shallower coastal regions, the effects of bottom topography are more prominent on the vertical structure of tidal currents. The vertical profile of the tidal current in summer, when the water column is strongly stratified, is disturbed near the pycnocline layer. The stratification significantly influences the vertical shear and distinct seasonal variation of the tidal current.  相似文献   
110.
The Bansong Group (Daedong Supergroup) in the Korean peninsula has long been considered to be an important time marker for two well-known orogenies, in that it was deposited after the Songnim orogeny (Permian–Triassic collision of the North and South China blocks) but was deformed during the Early to Middle Jurassic Daebo tectonic event. Here we present a new interpretation on the origin of the Bansong Group and associated faults on the basis of structural and geochronological data. SHRIMP (Sensitive High-Resolution Ion MicroProbe) U–Pb zircon age determination of two felsic pyroclastic rocks from the Bansong Group formed in the foreland basin of the Gongsuweon thrust in the Taebaeksan Basin yielded ages of 186.3 ± 1.5 and 187.2 ± 1.5 Ma, respectively, indicating the deposition of the Bansong Group during the late Early Jurassic. Inherited zircon component indicates ca. 1.9 Ga source material for the volcanic rocks, agreeing with known basement ages.The Bansong Group represents syntectonic sedimentation during the late Early Jurassic in a compressional regime. During the Daebo tectonic event, the northeast-trending regional folds and thrusts including the Deokpori (Gakdong) and Gongsuweon thrusts with a southeast vergence developed in the Taebaeksan Basin. This is ascribed to deformation in a continental-arc setting due to the northwesterly orthogonal convergence of the Izanagi plate on the Asiatic margin, which occurred immediately after the juxtaposition of the Taebaeksan Basin against the Okcheon Basin in the late stage of the Songnim orogeny. Thus, the Deokpori thrust is not a continental transform fault between the North and South China blocks, but an “intracontinental” thrust that developed after their juxtaposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号