首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   8篇
  国内免费   22篇
测绘学   2篇
大气科学   9篇
地球物理   37篇
地质学   93篇
海洋学   18篇
天文学   21篇
综合类   1篇
自然地理   16篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   8篇
  2017年   11篇
  2016年   4篇
  2015年   7篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   4篇
  2010年   6篇
  2009年   20篇
  2008年   13篇
  2007年   15篇
  2006年   3篇
  2005年   8篇
  2004年   14篇
  2003年   9篇
  2002年   4篇
  2001年   7篇
  2000年   7篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1984年   1篇
  1982年   1篇
  1978年   3篇
  1970年   1篇
排序方式: 共有197条查询结果,搜索用时 31 毫秒
51.
Field surveys and trench excavation investigations revealed that there were at least four large seismic events produced by slips on the Gosukebashi fault in the Holocene in the southeastern Rokko Mountains of Japan. The characteristics of deformed topographies and three-dimensionally excavated exposures show that this fault is a right-lateral strike–slip fault having an average slip rate of 1.0 mm/year, with a reverse displacement component. The principle indicators of past faulting events are: (i) termination of secondary faults; (ii) sedimentary deposits related to faulting; and (iii) injection veins of fault gouge related to seismic faulting in the fractured zone. Radiocarbon dates indicate that the events occurred pre-1660 BC , 1660 BC –220 AD , from ~ 30–220 to 600 AD and 15th century AD . The youngest event is probably associated with the large 1596 AD Keicho-Fushimi earthquake which occurred in the area around Kyoto and Kobe Cities. The second younger event is probably correlated with the 416 AD Yamato earthquake, which is the oldest historic earthquake in Japanese historic records. The results of trench surveys show that the horizontal displacement produced by an individual event is ~ 1.5 m, and the recurrence of seismic event intervals is ~ 1200 years in the Gosukebashi fault.  相似文献   
52.
An aim of the study is to understand the effect of recent urbanization on the increase of sediment disasters. A case study was done in Nagasaki City and its vicinity, where a severe disaster had occurred in July 1982. The results of this study are summarized as follows: (1) The houses built in the first period locate on the relatively safe morphological units such as lower terrace and gentle foot slope. (2) The houses built in the second period intruded onto the rather risky morphological units; steep slope, valley floor and river bed. These units were not used as a residential area before. (3) The houses built in the last period are settled on the more risky area compared to older settled areas. However the demand for new housing land increased. Thus it was decided to develop the area risky to sediment disaster.  相似文献   
53.
54.
Pacific-type orogeny revisited: Miyashiro-type orogeny proposed   总被引:30,自引:0,他引:30  
Shigenori  Maruyama 《Island Arc》1997,6(1):91-120
Abstract The concept of Pacific-type orogeny is revised, based on an assessment of geologic data collected from the Japanese Islands during the past 25 years. The formation of a passive continental margin after the birth of the Pacific Ocean at 600 Ma was followed by the initiation of oceanic plate subduction at 450 Ma. Since then, four episodes of Pacific-type orogeny have occurred to create an orogenic belt 400 km wide that gradually grew both oceanward and downward. The orogenic belt consists mainly of an accretionary complex tectonically interlayered with thin (<2 km thick), subhorizontal, high-P/T regional metamorphic belts. Both the accretionary complex and the high-P/T rocks were intruded by granitoids ~100 million years after the formation of the accretionary complex. The intrusion of calc-alkaline (CA) plutons was synchronous with the exhumation of high-P/T schist belts. Ages from microfossils and K-Ar analysis suggest that the orogenic climax happened at a time of mid-oceanic ridge subduction. The orogenic climax was characterized by the formation of major subhorizontal orogenic structures, the exhumation of high-P/T schist belts by wedge extrusion and subsequent domed uplift, and the intrusion-extrusion of CA magma dominantly produced by slab melting. The orogenic climax ended soon after ridge subduction, and thereafter a new Pacific-type orogeny began. A single Pacific-type orogenic cycle may correspond to the interaction of the Asian continental margin with one major Pacific oceanic plate. Ophiolites in Japan occur as accreted material and are not of island-arc but of plume origin. They presumably formed after the birth of the southern Pacific superplume at 600 Ma, and did not modify the cordilleran-type orogeny in a major way. Microplates, fore-arc slivers, intra-oceanic arc collisions and the opening of back-arc basins clearly contributed to cordilleran orogenesis. However, they were of secondary importance and served only to modify pre-existing major orogenic components. The most important cause of cordilleran-type orogeny is the subduction of a mid-oceanic ridge, by which the volume of continental crust increases through the transfer of granitic melt from the subducting oceanic crust to an orogenic welt. Accretionary complexes are composed mainly of recycled granitic sediments with minor amounts of oceanic material, which indicate that the accretion of oceanic material, including huge oceanic plateaus, was not significant for orogenic growth. Instead, the formation and intrusion of granitoids are the keys to continental growth, which is the most important process in Pacific-type orogeny. Collision-type orogeny does not increase the volume of continental crust. The name ‘Miyashiro-type orogeny’ is proposed for this revised concept of Pacific-type or cordilleran-type orogeny, in order to commemorate Professor A. Miyashiro's many contributions to a better understanding of orogenesis.  相似文献   
55.
Quaternary folding of the eastern Tian Shan, northwest China   总被引:3,自引:0,他引:3  
The Tian Shan, east–west trending more than 2000 km, is one of most active intracontinental mountain building belts that resulted from India–Eurasia collision during Cenozoic. In this study, Quaternary folding related to intracontinental mountain building of the Tian Shan orogenic belt is documented based on geologic interpretation and analyses of the satellite remote sensing images [Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM) and India Remote Sensing (IRS) Pan] combined with field geologic and geomorphic observations and seismic reflection profiles. Analyses of spatial–temporal features of Quaternary folded structure indicate that the early Quaternary folds are widely distributed in both piedmont and intermontane basins, whereas the late Quaternary active folds are mainly concentrated on the northern range-fronts. Field observations indicate that Quaternary folds are mainly characterized by fault-related folding. The formation and migration of Quaternary folding are likely related to decollement surfaces beneath the fold-and-fault zone as revealed by seismic reflection profiles. Moreover, analysis of growth strata indicates that the Quaternary folding began in late stage of early Pleistocene (2.1–1.2 Ma). Finally, tectonic evolution model of the Quaternary deformation in the Tian Shan is presented. This model shows that the Quaternary folding and faulting gradually migrate toward the range-fronts due to the continuous compression related to India–Eurasia collision during Quaternary time. As a result, the high topographic relief of the Tian Shan was formed.  相似文献   
56.
This paper provides further evidence for the ongoing discussion as to whether the Dabie UHPM belt formed in Triassic or Palaeozoic time, and whether the Sulu UHPM belt formed in Triassic or Neoproterozoic time. Combined use of laser Raman spectrometer (LR), cathodoluminescence imaging (CL), and ion probe U–Pb in‐situ dating (SHRIMP) provided accurate ages of UHPM from rocks collected from Weihai, NE Sulu UHPM belt. LR was used to identify coesite and other UHP minerals as inclusions in zircon separates from an amphibolized peridotite and an eclogite. CL was used to examine the zoning structure of these zircon, and SHRIMP dating was performed on specific spots on zircon to obtain ages of different geological events. An age of 221 ± 12 Ma was obtained for coesite‐bearing zircon from the amphibolized peridotite; an age of 228 ± 29 Ma for eclogite was obtained from the lower intercept of a concordia plot. These ages are interpreted as the time of UHPM in the Weihai region. Ultramafic rocks to the east of Weihai yield a magmatic age at 581 ± 44 Ma. The zircon in the ultramafic rocks possibly also records a thermal event at c. 400 Ma, but no independent geological evidence for this event has been found. The eclogite protolith formed in the Middle Proterozoic (1821 ± 19 Ma), which is similar to the age of country rock gneisses of 1847–1744 Ma. The new geochronological data confirm that UHPM occurred in the Triassic in the Sulu area when subduction took the ultramafic body and the eclogite protolith, together with the adjacent supracrustal rocks, to mantle depths.  相似文献   
57.
The Gorny Altai region in southern Siberia is one of the key areas in reconstructing the tectonic evolution of the western segment of the Central Asian Orogenic Belt (CAOB). This region features various orogenic elements of Late Neoproterozoic–Early Paleozoic age, such as an accretionary complex (AC), high-P/T metamorphic (HP) rocks, and ophiolite (OP), all formed by ancient subduction–accretion processes. This study investigated the detailed geology of the Upper Neoproterozoic to Lower Paleozoic rocks in a traverse between Gorno-Altaisk city and Lake Teletskoy in the northern part of the region, and in the Kurai to Chagan-Uzun area in the southern part. The tectonic units of the studied areas consist of (1) the Ediacaran (=Vendian)–Early Cambrian AC, (2) ca. 630 Ma HP complex, (3) the Ediacaran–Early Cambrian OP complex, (4) the Cryogenian–Cambrian island arc complex, and (5) the Middle Paleozoic fore-arc sedimentary rocks. The AC consists mostly of paleo-atoll limestone and underlying oceanic island basalt with minor amount of chert and serpentinite. The basaltic lavas show petrochemistry similar to modern oceanic plateau basalt. The 630 Ma HP complex records a maximum peak metamorphism at 660 °C and 2.0 GPa that corresponds to 60 km-deep burial in a subduction zone, and exhumation at ca. 570 Ma. The Cryogenian island arc complex includes boninitic rocks that suggest an incipient stage of arc development. The Upper Neoproterozoic–Lower Paleozoic complexes in the Gorno-Altaisk city to Lake Teletskoy and the Kurai to Chagan-Uzun areas are totally involved in a subhorizontal piled-nappe structure, and overprinted by Late Paleozoic strike-slip faulting. The HP complex occurs as a nappe tectonically sandwiched between the non- to weakly metamorphosed AC and the OP complex. These lithologic assemblages and geologic structure newly documented in the Gorny Altai region are essentially similar to those of the circum-Pacific (Miyashiro-type) orogenic belts, such as the Japan Islands in East Asia and the Cordillera in western North America. The Cryogenian boninite-bearing arc volcanism indicates that the initial stage of arc development occurred in a transient setting from a transform zone to an incipient subduction zone. The less abundant of terrigenous clastics from mature continental crust and thick deep-sea chert in the Ediacaran–Early Cambrian AC may suggest that the southern Gorny Altai region evolved in an intra-oceanic arc-trench setting like the modern Mariana arc, rather than along the continental arc of a major continental margin. Based on geological, petrochemical, and geochronological data, we synthesize the Late Neoproterozoic to Early Paleozoic tectonic history of the Gorny Altai region in the western CAOB.  相似文献   
58.
Yasuto  Itoh  Toshiyasu  Miyazaki  Seiji  Nishizaki 《Island Arc》2007,16(3):457-464
Abstract   Neotectonic crustal deformation in central Japan near a triple-junction of plates is investigated on the basis of paleomagnetic data. The progressive thermal demagnetization test isolated characteristic remanent magnetization from 18 sites of the early Quaternary Eboshidake volcanic rocks erupted around the termination of active strike-slip faults. The site-mean directions show considerably large scatter in declinations, and easterly deflection in average (Dm = −161.7°). On the basis of inclination statistics, measured inclinations (Im = −48.9°, δI = 6.6°) are concordant with an expected value from latitude of the study area. Because the sampling was planned to cover a wide stratigraphic range and eliminate the effect of geomagnetic secular variation, an easterly deflection is attributed to clockwise rotation around vertical axis. Together with previous paleomagnetic data, the present study indicates that clockwise-rotated areas in central Japan are aligned on a northeast–southwest recent shear zone delineated through geodetic survey. Deflection and scatter of paleomagnetic declinations of the Eboshidake volcanic rocks are much greater than those extrapolated from a recent strain rate, and might be explained by complicated motion anticipated at fault terminations and/or enhanced crustal rotation under elevated temperatures around a Quaternary volcanic province.  相似文献   
59.
Abstract Dolomite marble from the Kumdy–Kol area of the Kokchetav Massif contains abundant microdiamond, mainly in garnet and a few in diopside. The mineral assemblage at peak metamorphic condition consists of dolomite + diopside + garnet (+ aragonite) ± diamond. Inclusions of very low MgCO3 calcite and almost pure calcite occur in diopside and are interpreted as aragonite and/or aragonite + dolomite. Single-phase Mg–calcite in diopside with a very high MgCO3 component (up to 21.7 mol%) was also found in diamond-free dolomitic marble, and is interpreted as a retrograde product from aragonite + dolomite to Mg–calcite. The dolomite stability constrains the maximum pressure (P) at < 7 GPa using previous experimental data, whereas the occurrence of diamond yields the minimum peak pressure–temperature (P–T) condition at 4.2 GPa and 980 °C at X co 2 = 0.1. The highest MgCO3 in Mg–calcite constrains the minimum P–T condition higher than 2.5 GPa and 800 °C for the exhumation stage. As these marbles were subjected to nearly identical P–T metamorphic conditions, the appearance of diamond in some carbonate rocks was explained by high X co 2. A low X co 2 condition refers to high oxidized conditions and diamond (and/or graphite) becomes unstable. Difference in X co 2 for marble from the same area suggests local heterogeneity of fluid compositions during ultrahigh-pressure metamorphism.  相似文献   
60.
The Ediacaran period was one of the most important times for the evolution of life. However, the scarcity of well-preserved outcrops of Ediacaran rocks still leaves ambiguity in decoding ambient surface environmental changes and biological evolution.The Ediacaran strata in South China are almost continuously exposed, comprise mainly carbonate rocks with subordinate black shales and sandstones, and they contain many fossils, suitable for study of environmental and biological changes in the Ediacaran. We conducted drilling through the Doushantuo Fm at four sites in the Three Gorges area to obtain continuous, fresh samples without surface alteration and oxidation. We analyzed 87Sr/86Sr and 88Sr/86Sr ratios of the fresh carbonate rocks, selected on the basis of microscopic observations and the geochemical signatures of Sr contents, Mn/Sr and Rb/Sr ratios, and δ18O values, with a multiple collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS).The chemostratigraphy of the 87Sr/86Sr ratios of the drilled samples displays a smooth curve and two large positive shifts during Ediacaran time. The combination of the detailed chemostratigraphies of δ13C, δ18O and 87Sr/86Sr values and Mn and Fe contents enables us to decode the surface environmental changes and their causes in the Ediacaran. The first large positive excursion of 87Sr/86Sr occurred together with negative δ13C and positive δ18O excursions. The higher 87Sr/86Sr values indicate an enhancement of continental weathering, whereas the positive δ18O excursion suggests global cooling. Global regression due to global cooling enhanced the oxidative decay of exposed marine organic sediments and continental weathering. Accelerated influx of nutrients promoted primary productivity, resulting in oxidation of dissolved organic carbon (DOC), whereas active sulfate reduction due to a higher sulfate influx from the continents caused remineralization of the large DOC, both of which caused a negative δ13C anomaly. The 580 Ma Gaskiers glaciation accounts for the close correlation among the positive 87Sr/86Sr, negative δ13C and positive δ18O excursions.The second large positive shift of 87Sr/86Sr firstly accompanied a positive δ13C excursion, and continued through the Shuram δ13C negative excursion. The positive correlation of δ13C and 87Sr/86Sr values is consistent with an enhanced continental weathering rate due to continental collisions that built Trans-Gondwana mountain chains, and with a higher primary activity due to the enhancement of continental weathering and consequent higher nutrient contents in seawater. The accompanied increase in Mn and Fe contents implies a gradual decline of the seawater oxygen content due to more active aerobic respiration and oxidation of reductive materials flowing in the oceans. In the Shuram excursion, higher 87Sr/86Sr values and a transition from increase to decrease in Mn and Fe contents were accompanied by the large negative δ13C excursion. The higher 87Sr/86Sr values are the first compelling evidence for enhanced continental weathering, which was responsible for the large δ13C anomaly through the remineralization of the DOC by more active sulfate reduction due to a higher sulfate influx. Higher Mn and Fe contents in the early and middle stages of the excursion suggest a decline in the oxygen content of seawater due to oxidative decay of the DOC, whereas in the late stages the decrease in Mn and Fe contents is consistent with oceanic oxygenation.The emergence of Ediacara biota after the Gaskiers glaciation and the prosperity of the latest Ediacaran is concomitant with the formation of more radiogenic seawater with high 87Sr/86Sr values, suggesting that enhanced continental weathering, and the consequent higher influx of nutrients, played an important role in biological evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号