首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   9篇
  国内免费   4篇
测绘学   2篇
大气科学   6篇
地球物理   25篇
地质学   45篇
海洋学   2篇
天文学   4篇
综合类   1篇
自然地理   3篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   12篇
  2017年   9篇
  2016年   11篇
  2015年   6篇
  2014年   12篇
  2013年   9篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2003年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
41.
42.
Groundwater is the most appropriate and widely used source of drinking water, which is increasingly threatened by pollution from industrial and agricultural activities. To check the severity of the problem, 156 groundwater samples were collected from various depths (60-110 ft) of 52 different localities in Faisalabad city, the third largest metropolis in Pakistan, and analyzed for the metals (Zn, Cu, Cd, Ni, Pb, Mn and Fe) concentration in 2009. Quantification was done by using Flame Atomic Absorption Spectrophotometer technique and the results were compared with WHO standards for drinking water quality. Results showed that the levels of Cu, Mn and Fe were below the WHO standards while the concentrations of Zn, Cd, Ni and Pb were above the recommended levels of safe drinking water. Correlation analysis among the occurrence of these heavy metals revealed a highly significant and positive correlation of Mn with Zn and Fe. A significant and positive correlation of Cd was also found with Cu and groundwater depth showing that there is strong association between Cu-Cd pair and that the Cd concentration varies with depth of groundwater in the study area. Regional patterns of heavy metals occurrence were mapped using Geographical Information System (GIS) for the identification and demarcation of risk areas. The concentration maps may be used by policymakers of the city to mitigate groundwater pollution.  相似文献   
43.
Climate change caused by anthropogenic activities has generated a variety of research focusing on investigating the past climate, predicting the future climate and quantifying the change in climate extreme events by using different climate models. Climate extreme events are valuable to evaluate the potential impact of climate change on human activities, agriculture and economy and are also useful to monitor the climate change on global scale. Here, a Regional Climate Model (RCM) simulation is used to study the future variations in the temperature extreme indices, particularly change in frequency of warm and cold spells duration over Pakistan. The analyses are done on the basis of simulating two 30 years simulations with the Hadley Center’s RCM PRECIS, at a horizontal resolution of 50 km. Simulation for the period 1961–1990 represents the recent climate and simulation for the period 2071–2100 represents the future climate. These simulations are driven by lateral boundary conditions from HadAM3P GCM of Hadley centre UK. For the validation of model, observed mean, maximum and minimum temperatures for the period 1961–1990 at all the available stations in Pakistan are first averaged and are then compared with the PRECIS averaged grid-box data. Also the observed monthly gridded data set of Climate Research Unit (UK) data is used to validate the model. Temperature indices in the base period as well as in future are then calculated and the corresponding change is observed. Percentile based spatial change of temperature shows that in summer, increase in daily minimum temperature is more as compared to the increase of daily maximum temperature whereas in winter, the change in maximum temperature is high. The occurrence of annual cold spells shows significantly decreasing trend while for warm spells there is slight increasing trend over Pakistan.  相似文献   
44.
Arsenic is a ubiquitous element in the environment and occurs naturally in both organic and inorganic forms. Under aerobic condition, the dominant form of arsenic in waters is arsenate, which is highly mobile and toxic. Arsenic poisoning from drinking water remains a serious world health issue. There are various standard methods for arsenic removal from drinking waters (coagulation, sorption, ion-exchange reactions or methods of reverse osmosis) and alternative methods, such as biosorption. Biosorption of arsenic from natural and model waters by native or chemically modified (with urea or ferric oxyhydroxides) plant biomass prepared from sawdust of Picea abies was studied. The kinetic of the adsorption process fitted well the pseudo second order adsorption model and equilibrium was achieved after 2 h. The results showed that biosorption was well described by both Langmuir and Freundlich isotherms. The maximum biosorption capacity of the sawdust modified with ferric oxyhydroxides, evaluated by Langmuir adsorption model, was 9.259 mg/g, while the biosorption capacity of unmodified biosorbent or biosorbent modified with urea was negligible. The adsorption capacity is comparable to results published by other authors, suggesting that the prepared chemically modified biosorbent has potential in remediation of contaminated waters.  相似文献   
45.
A probabilistic approach is used to evaluate the seismic hazard for 12 strategic cities in Saudi Arabia along the eastern coast of Red Sea. The focal depth variations controlled by rheological characteristics are taken into account for hazard calculations, and its creditability is tested through sensitivity analysis for hazard results. This study presents a neo-probabilistic seismic hazard assessment methodology in which the focal depth distribution of earthquakes within seismogenic layer is divided into three depth slices. These depth slices are based upon rheological characteristic of seismogenic layer. The hazard results are obtained using this depth-slice methodology and conventional approach in which uniform distribution of seismicity within seismogenic layer is assumed. The sensitivity analysis culminated in underestimation of hazard values in higher frequencies for uniform distribution of seismicity within seismogenic layer. Foregoing the observations recorded above, it can be concluded that the exploitation of depth-slices biased by the rheology to calculate hazard is relatively preferable in the situations demanding safety measures.  相似文献   
46.
Coesite relics were discovered as inclusions in clinopyroxene in eclogite and as inclusions in zircon in felsic and pelitic gneisses from Higher Himalayan Crystalline rocks in the upper Kaghan Valley, north‐west Himalaya. The metamorphic peak conditions of the coesite‐bearing eclogites are estimated to be 27–32 kbar and 700–770 °C, using garnet–pyroxene–phengite geobarometry and garnet–pyroxene geothermometry, respectively. Cathodoluminescence (CL) and backscattered electron (BSE) imaging distinguished three different domains in zircon: inner detrital core, widely spaced euhedral oscillatory zones, and thin, broadly zoned outermost rims. Each zircon domain contains a characteristic suite of micrometre‐sized mineral inclusions which were identified by in situ laser Raman microspectroscopy. Core and mantle domains contain quartz, apatite, plagioclase, muscovite and rutile. In contrast, the rim domains contain coesite and minor muscovite. Quartz inclusions were identified in all coesite‐bearing zircon grains, but not coexisting with coesite in the same growth domain (rim domain). 206Pb/238U zircon ages reveal that the quartz‐bearing mantle domains and the coesite‐bearing rim were formed at c. 50 Ma and 46.2 ± 0.7 Ma, respectively. These facts demonstrate that the continental materials were buried to 100 km within 7–9 Myr after initiation of the India–Asia collision (palaeomagnetic data from the Indian oceanic floor supports an initial India‐Asia contact at 55–53 Ma). Combination of the sinking rate of 1.1–1.4 cm year?1 with Indian plate velocity of 4.5 cm year?1 suggests that the Indian continent subducted to about 100 km depth at an average subduction angle of 14–19°.  相似文献   
47.
Biochar is considered a promising amendment for the reduction of metal concentration in plants; however, the effects of biochar in terms of dose and feedstock on metal uptake by plants remain widely unclear. In the current study, three individual biochars were prepared at 450 °C from different feedstocks (wheat straw, sukh chain (Pongamia pinnata), and cotton sticks). The main aim was to evaluate their ability to remediate cadmium (Cd)-spiked soil in terms of growth response and Cd uptake by wheat (Triticum aestivum) tissues. Biochars were separately applied at 0, 1, and 2% (w/w) in Cd-spiked soil and wheat was grown until maturity in pots and then morphological and physiological parameters and Cd concentrations in grains, roots, and shoots were determined. The post-harvest soil was analyzed for extractable Cd concentrations. Plants grown in Cd-spiked soil treated with biochars had higher seed germination, lengths of roots, shoots, and spikes, grains per spike and leaf relative water contents, chlorophyll contents, and dry weight of roots, shoots, and grains as compared to the untreated control. Biochar treatments significantly decreased the Cd concentrations in shoots, roots, and grains as well as total Cd uptake by grains. Soil extractable Cd concentrations were significantly decreased with biochar treatments. The application of 2.0% wheat straw biochar was the most efficient treatment in increasing grain yield and decreasing Cd in grains as well as soil extractable Cd than the other two biochars and doses applied.  相似文献   
48.
49.
Vizianagaram–Srikakulam coastal shoreline consisting of beaches, mangrove swamps, tidal channel and mudflats is one of the vulnerable coasts in Andhra Pradesh, India. Five site-specific parameters, namely rate of geomorphology, coastal elevation, coastal slope, shoreline change and mean significant wave height, were chosen for constructing coastal vulnerability index and assessing coastal landscape vulnerability. The findings revealed a shift of 2.5 km in shoreline towards the land surface because of constant erosion and that of 1.82 km towards the sea due to accretion during 1997–2017. The rate of high erosion was found in zones IV and V, and high accretion was found in zones II and III. Coastal vulnerability index analysis revealed constant erosion along shoreline and sea level rise in the study area. Most of the coast in zone V has recorded very high vulnerability due to erosion, high slope, significant wave height and sea level rise. Erosion and accretion, significant wave height, sea level rise and slope are attributed to high vulnerability in zones III and IV. Zone II recorded moderate vulnerability. Relatively lower slope, mean sea wave height and sea level rise have made this zone moderately vulnerable. Very low vulnerability was found in zone I, and low vulnerability was recorded in zone II. Accretion, low slope and low sea level rise were found to be causative factors of lower vulnerability. Thus, zones III, IV and V should be accorded higher priorities for coastal management. The findings can be helpful in coastal land planning and management and preparing emergency plans of the coastal ecosystems.  相似文献   
50.
Two well-developed mesoscopic folds, D_2 and D_3, which postdate the middle amphibolite metamorphism, were recognized in the western hinterland zone of Pakistan. NW–SE trending D_2 folds developed during NE–SW horizontal bulk shortening followed by NE–SW trending D_3 folds, which developed during SE–NW shortening. Micro- to mesoscopically the NW–SE trending S2 crenulation cleavage, boudins and mineral stretching lineations are overprinted by D_3. The newly established NW–SE trending micro- to mesoscopic structures in Munda termed D_2, which postdated F_1/F_2, is synchronously developed with F3 structures in the western hinterland zone of Pakistan. We interpret that D_2 and D_3 folds are counterclockwise rotated in the tectonic event that has evolved the Hazara Kashmir Syntaxis after the main phase Indian plate and Kohistan Island Arc collision. Chlorite replacement by biotite in the main matrix crenulation cleavages indicates prograde metamorphism related with D_2. The inclusion of muscovite and biotite in garnet porphyroblasts and the presence of staurolite in these rocks indicate that the Barrovian metamorphic conditions predate D_2 and D_3. We interpret that garnet, staurolite and calcite porphyroblasts grew before D_2 because the well developed S2 crenulation cleavage wraps around these porphyroblasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号