首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   6篇
  国内免费   2篇
测绘学   1篇
大气科学   10篇
地球物理   29篇
地质学   21篇
海洋学   25篇
天文学   15篇
综合类   1篇
自然地理   4篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   6篇
  2013年   7篇
  2012年   8篇
  2011年   5篇
  2010年   6篇
  2009年   9篇
  2008年   8篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   8篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1998年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1989年   2篇
  1986年   1篇
  1981年   2篇
  1978年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
21.
Sedimentary kaolin deposits in the Lote 18 area (Santa Cruz Province, Patagonia, Argentina) have been mined since 1951. They constitute 30% of the country's production and are mainly used in the ceramic whiteware industry. The deposits belong to the Baqueró Formation (Lower Cretaceous) and unconfomably overlie either the ash-flow tuffs of the Chon-Aike Formation (Middle Jurassic), which are altered to kaolinite and minor illite, or the ash-fall tuffs of Bajo Grande Formation (Upper Jurassic-Lower Cretaceous), which are altered mainly to smectites. The presence of illite or smectite, as well as the kaolinite crystallinity, depends on the stratigraphic position of the kaolin horizons within the Lower Member of the Baqueró Formation and on the lithology of the underlying rocks. Kaolin beds composed of well-crystallized kaolinite at the base of the sequence overlaying Chon-Aike rocks are the purest. Kaolinite becomes less well cystallized with transport. Edge-to-face and swirl SEM textural patterns indicate the compaction of flocculated clays and clay movement during drainage and compaction. Mineralogical, petrological, and physico-structural evidence (i.e., form, extent, thickness) indicates that the kaolin deposits are sedimentary, formed by the transportation and deposition of previously formed kaolinite. Kaolin beds are ovoidal in plan and lenticular in profile, with thickness ranging from centimeters to 11 meters, and the culmination of fining-upward clastic sequences. Sedimentary facies analysis indicates that the kaolin deposits were formed in a fluvial environment from currents with a high suspended-load/bed-load ratio, as would result from deposition in ox-bow lakes.  相似文献   
22.
23.
24.
25.
We present late-time photometry for two bright type II-P supernovae (SNe) 2004dj and 2004et, extending over 400 d after the explosion, which are measured with a set of intermediate-band filters that have the advantage of tracing the strength variations of some spectral features. Although these two SNe II-P exhibit similar photometric evolution at earlier times, they diverge during the nebular phase. SN 2004dj shows a slow late-time decline rate with - 0.7 ±0.1 mag (100d)^-1 during the period ranging from t ≈ 200 - 300 d after the explosion, while SN 2004et shows a much faster decline rate at a comparable phase, e.g., 1.3 ± 0.1 mag (100d)^-1. The steeper decay rate seen in SN 2004et is likely due to dust formation in the explosion ejecta. Based on intermediate-band photometry, we derived the evolution of the feature lines [e.g., Hα] of SNe 2004dj and 2004et which are similar in flux at comparable phases but perhaps with significantly different decay rates. The origin of the observed variations in the continuum and the feature lines is briefly discussed.  相似文献   
26.
Abstract— Aerogel collectors have been used to capture cometary, interplanetary, and interstellar dust grains by NASA's Stardust mission, highlighting their importance as a scientific instrument. Due to the fragile and heterogeneous nature of cometary dust grains, their fragments are found along the walls of tracks that are formed during the capture process. These fragments appear to experience a wide range of thermal alteration and the causes of this variation are not well understood at a theoretical level as physical models of track formation are not well developed. Here, a general model of track formation that allows for the existence of partially and completely vaporized aerogel material in tracks is developed. It is shown that under certain conditions, this general track model reduces to the kinetic “snowplow” model that has previously been proposed. It is also shown, based on energetic considerations, that track formation is dominated by an expansion that is snowplow‐like in the later stages of track formation. The equation of motion for this snowplow‐like stage can be solved analytically, thus placing constraints on the amount of heating experienced by cometary dust fragments embedded in track walls. It is found that the heating of these fragments, for a given impact velocity, is expected to be greater for those embedded in larger tracks. Given the expected future use of aerogels for sample return missions, the results presented here imply that the choice of aerogel compositions can have a significant effect on the modification of samples captured and retrieved by these collectors.  相似文献   
27.
The boundary element method is used to obtain dynamic stiffness functions of rigid cylindrical foundations embedded in a uniform or layered viscoelastic half-space. Dynamic stiffness functions of hemispherical foundations embedded in a uniform half-space are also computed. The direct integral equation formulation is used in combination with the complete space point load fundamental solution that is integrated numerically along the azimuthal coordinate. The approach is easy to implement because of the simplicity of the fundamental solution. The numerical results obtained by this method for cylindrical and hemispherical foundations are very close to corresponding published results obtained by different procedures. A parametric study shows the important effects of the Poisson's ratio on the dynamic stiffness functions of cylindrical foundations embedded in a uniform viscoelastic half-space. The effect of the bedrock compliance on the stiffness functions is also shown in the case of cylindrical foundations embedded in a soil layer that rests on a bedrock.  相似文献   
28.
We have determined the elastic thicknessTe of the oceanic lithosphere along two volcanic chains of the South Central Pacific: Cook-Austral and Society islands. We used a three-dimensional spatial method to model the lithospheric flexure assuming a continuous elastic plate. The model was constrained by geoid height data from the SEASAT satellite.Along the Cook-Austral chain the elastic thickness increases westward, from 2–4 km at McDonald hot spot to 14 km at Rarotonga. At McDonald seamount, however, the data are better explained by a local compensation model. The observed trend shows an increase ofTe with age of plate at loading time. However, the elastic layer under the Cook-Austral appears systematically thinner by several kilometers than expected for “normal” seafloor, suggesting that substantial thermal thinning has taken place in this region. Considering the apparent thermal age of the plate instead of crustal age improves noticeably the results. Along the Society chainTe varies from 20 km under Tahiti to 13 km under Maupiti which is located 500 km westward. When plotting together the Society and Cook-AustralTe results versus age of load, we notice that within the first five million years after loading,Te decreases significantly while tending rapidly to an equilibrium value. This may be interpreted as the effect of initial stress relaxation which occurs just after loading inside the lower lithosphere and suggests that the presently measured elastic thickness under the very young Tahiti load ( 0.8 Ma) is not yet the equilibrium thickness.  相似文献   
29.
Lacustrine sediments contain a wide range of proxies that enable paleoenvironmental reconstructions. For instance, charcoal can be used to document past fire regime changes. In order to analyse high-temporal- and spatial-resolution records, however, it is necessary to develop fast, low-cost and high-stratigraphic-resolution methods. We developed a new paleo-fire proxy by studying a lacustrine core from the Esterel Massif, SE France, an area affected by two recent fire events, in AD 1987 and 2003. For this purpose, we searched for charcoal deposited and preserved in the lake sediments by combining a number of complementary methods, including: classic macrocharcoal tallying, scanning spectrophotometry, scanning hyperspectral imaging and high pressure liquid chromatography analyses. Macrocharcoal quantification is efficient, but time-consuming, and only provides intermediate-resolution data (cm scale). Spectrophotometry, used classically to quantify colour, is very fast, provides high-resolution data (4 mm) and is non-destructive (core preservation). Hyperspectral data have the same advantages as spectrophotometry, but offer higher spatial resolution (64-µm pixel size) and higher spectral resolution (6 nm) for core logging applications. The main result of this research is based on hyperspectral analysis at very high stratigraphic resolution using the I-band index. This index usually measures reflectance values at [660, 670 nm] corresponding to the trough in red reflectance produced by Chlorophyll a and its diagenetic products. This [660, 670 nm] reflectance trough, however, is also affected by the presence of altered organic matter and decreases with altered organic matter such as charcoal particles. Charcoal effect on the reflectance of Chlorophyll a and its diagenetic products is identified on first derivative spectra by a characteristic pattern around 675 nm, which is also in agreement with the Chlorophyll a concentrations measured by high-pressure liquid chromatography and charcoal particles. The I-band index is hence suitable for detecting burned organic matter, by quantifying the dilution of the chlorophyll signal by the charcoal signal. Thus, this adaptation of the I-band index can be applied in fire reconstruction studies.  相似文献   
30.
Quantifying sediment flux within rivers is a challenge for many disciplines due, mainly, to difficulties inherent to traditional sediment sampling methods. These methods are operationally complex, high cost, and high risk. Additionally, the resulting data provide a low spatial and temporal resolution estimate of the total sediment flux, which has impeded advances in the understanding of the hydro-geomorphic characteristics of rivers. Acoustic technologies have been recognized as a leading tool for increasing the resolution of sediment data by relating their echo intensity level measurements to suspended sediment. Further effort is required to robustly test and develop these techniques across a wide range of conditions found in natural river systems. This article aims to evaluate the application of acoustic inversion techniques using commercially available, down-looking acoustic Doppler current profilers (ADCPs) in quantifying suspended sediment in a large sand bed river with varying bi-modal particle size distributions, wash load and suspended-sand ratios, and water stages. To achieve this objective, suspended sediment was physically sampled along the Paraná River, Argentina, under various hydro-sedimentological regimes. Two ADCPs emitting different sound frequencies were used to simultaneously profile echo intensity level within the water column. Using the sonar equation, calibrations were determined between suspended-sand concentrations and acoustic backscatter to solve the inverse problem. The study also analyzed the roles played by each term of the sonar equation, such as ADCP frequency, power supply, instrument constants, and particle size distributions typically found in sand bed rivers, on sediment attenuation and backscatter. Calibrations were successfully developed between corrected backscatter and suspended-sand concentrations for all sites and ADCP frequencies, resulting in mean suspended-sand concentration estimates within about 40% of the mean sampled concentrations. Noise values, calculated using the sonar equation and sediment sample characteristics, were fairly constant across evaluations, suggesting that they could be applied to other sand bed rivers. © 2018 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号