首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6345篇
  免费   1828篇
  国内免费   732篇
测绘学   192篇
大气科学   719篇
地球物理   2701篇
地质学   3119篇
海洋学   580篇
天文学   676篇
综合类   337篇
自然地理   581篇
  2024年   14篇
  2023年   55篇
  2022年   163篇
  2021年   197篇
  2020年   171篇
  2019年   313篇
  2018年   359篇
  2017年   448篇
  2016年   501篇
  2015年   499篇
  2014年   561篇
  2013年   597篇
  2012年   452篇
  2011年   450篇
  2010年   461篇
  2009年   348篇
  2008年   382篇
  2007年   298篇
  2006年   215篇
  2005年   205篇
  2004年   154篇
  2003年   199篇
  2002年   186篇
  2001年   189篇
  2000年   199篇
  1999年   181篇
  1998年   126篇
  1997年   143篇
  1996年   132篇
  1995年   115篇
  1994年   108篇
  1993年   86篇
  1992年   78篇
  1991年   61篇
  1990年   55篇
  1989年   46篇
  1988年   41篇
  1987年   15篇
  1986年   26篇
  1985年   15篇
  1984年   11篇
  1983年   16篇
  1982年   8篇
  1981年   10篇
  1980年   6篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1969年   1篇
  1958年   1篇
排序方式: 共有8905条查询结果,搜索用时 29 毫秒
981.
The origins of the pre-Debby (2006) mesoscale convective system (MCS) and African easterly wave (AEW) and their precursors were traced back to the southwest Arabian Peninsula, Asir Mountains (AS), and Ethiopian Highlands (EH) in the vicinity of the ITCZ using satellite imagery, GFS analysis data and ARW model. The sources of the convective cloud clusters and vorticity perturbations were attributed to the cyclonic convergence of northeasterly Shamal wind and the Somali jet, especially when the Mediterranean High shifted toward east and the Indian Ocean high strengthened and its associated Somali jet penetrated farther to the north. The cyclonic vorticity perturbations were strengthened by the vorticity stretching associated with convective cloud clusters in the genesis region—southwest Arabian Peninsula. A conceptual model was proposed to explain the genesis of convective cloud clusters and cyclonic vorticity perturbations preceding the pre-Debby (2006) AEW–MCS system.  相似文献   
982.
Based on a search for multi‐periodic variability among the semi‐regular red variable stars in the database of the All Sky Automated Survey (ASAS), a sample of 72 typical examples is presented. Their period analysis was performed using the Discrete Fourier Transform. In 41 stars we identified two significant periods each, simultaneously present, while the remaining 31 cases revealed even three such periods per star. They occur in a range roughly between 50 and 3000 days. Inter‐relationships between these periods were analyzed using the “double period diagram” which compares adjacent periods, and the so‐called “Petersen diagram”, the period ratio vs. the shorter period. In both diagrams we could identify six sequences of accumulation of the period values. For five of these sequences (containing 97 % of all data points) we found an almost perfect coincidence with those of previous studies which were based on very different samples of semiregular red variables. Therefore, existence and locations of these sequences in the diagrams seem to be universal features, which appear in any data set of semi‐regularly variable red giants of the AGB; we conclude that they are caused by different pulsation modes as the typical and consistent properties of similar stellar AGB configurations. Stellar pulsations can be considered as the principal cause of the observed periodic variability of these stars, and not binary, rotation of a spotted surface or other possible reasons suggested in the literature. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
983.
Recent theoretical developments in astronomical aperture synthesis have revealed the existence of integer‐ambiguity prob‐lems. Those problems, which appear in the self‐calibration procedures of radio imaging, have been shown to be similar to the nearest‐lattice point (NLP) problems encountered in high‐precision geodetic positioning and in global navigation satellite systems. In this paper we analyse the theoretical aspects of the matter and propose new methods for solving those NLP problems. The related optimization aspects concern both the preconditioning stage, and the discrete‐search stage in which the integer ambiguities are finally fixed. Our algorithms, which are described in an explicit manner, can easily be implemented. They lead to substantial gains in the processing time of both stages. Their efficiency was shown via intensive numerical tests. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
984.
Sutter's Mill is a regolith breccia composed of both heavily altered clasts and more reduced xenoliths. Here, we present a detailed investigation of fragments of SM18 and SM51. We have characterized the water content and the mineralogy by infrared (IR) and thermogravimetric analysis (TGA) and the structure of the organic compounds by Raman spectroscopy, to characterize the secondary history of the clasts, including aqueous alteration and thermal metamorphism. The three methods used in this study suggest that SM18 was significantly heated. The amount of water contained in phyllosilicates derived by TGA is estimated to be approximately 3.2 wt%. This value is quite low compared with other CM chondrites that typically range from 6 to 12 wt%. The infrared transmission spectra of SM18 show that the mineralogy of the sample is dominated by a mixture of phyllosilicate and olivine. SM18 shows an intense peak at 11.2 μm indicative of olivine (Fig. 1). If we compare SM18 with other CM and metamorphosed CM chondrites, it shows one of the most intense olivine signatures, and therefore a lower proportion of phyllosilicate minerals. The Raman results tend to support a short‐duration heating hypothesis. In the ID/IG versus FWHM‐D diagram, SM18 appears to be unusual compared to most CM samples, and close to the metamorphosed CM chondrites Pecora Escarpment (PCA) 91008 and PCA 02012. In the case of SM51, infrared spectroscopy reveals that olivine is less abundant than in SM18 and the 10 μm silicate feature is more similar to that of moderately altered CM chondrites (like Murchison or Queen Alexandra Range [QUE] 97990). Raman spectroscopy does not clearly point to a heating event for SM51 in the ID/IG versus FWHM‐D diagram. However, TGA analysis suggests that SM51 was slightly dehydrated as the amount of water contained in phyllosilicates is approximately 3.7 wt%, which is higher than SM18, but still lower than phyllosilicate water contents in weakly altered CM chondrites. Altogether, these results confirm that fragments with different secondary histories are present within the Sutter's Mill fall. The dehydration that is clearly observed for SM18 is attributed to a short‐duration heating based on the similarity of its Raman spectra to that of PCA 91008. Because of the brecciated nature of Sutter's Mill and the presence of adjacent clasts with different thermal histories, impacts that can efficiently fragment and heat porous materials are the preferred heat source.  相似文献   
985.
We determined the abundances and enantiomeric compositions of amino acids in Sutter's Mill fragment #2 (designated SM2) recovered prior to heavy rains that fell April 25–26, 2012, and two other meteorite fragments, SM12 and SM51, that were recovered postrain. We also determined the abundance, enantiomeric, and isotopic compositions of amino acids in soil from the recovery site of fragment SM51. The three meteorite stones experienced terrestrial amino acid contamination, as evidenced by the low d/l ratios of several proteinogenic amino acids. The d/l ratios were higher in SM2 than in SM12 and SM51, consistent with rain introducing additional l‐ amino acid contaminants to SM12 and SM51. Higher percentages of glycine, β‐alanine, and γ‐amino‐n‐butyric acid were observed in free form in SM2 and SM51 compared with the soil, suggesting that these free amino acids may be indigenous. Trace levels of d +l‐ β‐aminoisobutyric acid (β‐AIB) observed in all three meteorites are not easily explained as terrestrial contamination, as β‐AIB is rare on Earth and was not detected in the soil. Bulk carbon and nitrogen and isotopic ratios of the SM samples and the soil also indicate terrestrial contamination, as does compound‐specific isotopic analysis of the amino acids in the soil. The amino acid abundances in SM2, the most pristine SM meteorite analyzed here, are approximately 20‐fold lower than in the Murchison CM2 carbonaceous chondrite. This may be due to thermal metamorphism in the Sutter's Mill parent body at temperatures greater than observed for other aqueously altered CM2 meteorites.  相似文献   
986.
The Sutter's Mill (SM) carbonaceous chondrite is a regolith breccia, composed predominantly of CM2 clasts with varying degrees of aqueous alteration and thermal metamorphism. An investigation of presolar grains in four Sutter's Mill sections, SM43, SM51, SM2‐4, and SM18, was carried out using NanoSIMS ion mapping technique. A total of 37 C‐anomalous grains and one O‐anomalous grain have been identified, indicating an abundance of 63 ppm for presolar C‐anomalous grains and 2 ppm for presolar oxides. Thirty‐one silicon carbide (SiC), five carbonaceous grains, and one Al‐oxide (Al2O3) were confirmed based on their elemental compositions determined by C‐N‐Si and O‐Si‐Mg‐Al isotopic measurements. The overall abundance of SiC grains in Sutter's Mill (55 ppm) is consistent with those in other CM chondrites. The absence of presolar silicates in Sutter's Mill suggests that they were destroyed by aqueous alteration on the parent asteroid. Furthermore, SM2‐4 shows heterogeneous distributions of presolar SiC grains (12–54 ppm) in different matrix areas, indicating that the fine‐grained matrix clasts come from different sources, with various thermal histories, in the solar nebula.  相似文献   
987.
X‐ray microtomography (XMT), X‐ray diffraction (XRD), and magnetic hysteresis measurements were used to determine micrometeorite internal structure, mineralogy, crystallography, and physical properties at μm resolution. The study samples include unmelted, partially melted (scoriaceous), and completely melted (cosmic spherules) micrometeorites. This variety not only allows comparison of the mineralogy and porosity of these three micrometeorite types but also reveals changes in meteoroid properties during atmospheric entry at various velocities. At low entry velocities, meteoroids do not melt and their physical properties do not change. The porosity of unmelted micrometeorites varies considerably (0–12%) with one friable example having porosity around 50%. At higher velocities, the range of meteoroid porosity narrows, but average porosity increases (to 16–27%) due to volatile evaporation and partial melting (scoriaceous phase). Metal distribution seems to be mostly unaffected at this stage. At even higher entry velocities, complete melting follows the scoriaceous phase. Complete melting is accompanied by metal oxidation and redistribution, loss of porosity (1 ± 1%), and narrowing of the bulk (3.2 ± 0.5 g cm?3) and grain (3.3 ± 0.5 g cm?3) density range. Melted cosmic spherules with a barred olivine structure show an oriented crystallographic structure, whereas other subtypes do not.  相似文献   
988.
Cosmogenic He, Ne, and Ar as well as the radionuclides 10Be, 26Al, 36Cl, 41Ca, 53Mn, and 60Fe have been determined on samples from the Gebel Kamil ungrouped Ni‐rich iron meteorite by noble gas mass spectrometry and accelerator mass spectrometry (AMS), respectively. The meteorite is associated with the Kamil crater in southern Egypt, which is about 45 m in diameter. Samples originate from an individual large fragment (“Individual”) as well as from shrapnel. Concentrations of all cosmogenic nuclides—stable and radioactive—are lower by a factor 3–4 in the shrapnel samples than in the Individual. Assuming negligible 36Cl decay during terrestrial residence (indicated by the young crater age <5000 years; Folco et al. 2011 ), data are consistent with a simple exposure history and a 36Cl‐36Ar cosmic ray exposure age (CRE) of approximately (366 ± 18) Ma (systematic errors not included). Both noble gases and radionuclides point to a pre‐atmospheric radius >85 cm, i.e., a pre‐atmospheric mass >20 tons, with a preferred radius of 115–120 cm (50–60 tons). The analyzed samples came from a depth of approximately 20 cm (Individual) and approximately 50–80 cm (shrapnel). The size of the Gebel Kamil meteoroid determined in this work is close to estimates based on impact cratering models combined with expectations for ablation during passage through the atmosphere (Folco et al. 2010 , 2011 ).  相似文献   
989.
Novato, a newly observed fall in the San Francisco Bay area, is a shocked and brecciated L6 ordinary chondrite containing dark and light lithologies. We have investigated the U‐Pb isotope systematics of coarse Cl‐apatite grains of metamorphic origin in Novato with a large geometry ion microprobe. The U‐Pb systematics of Novato apatite reveals an upper intercept age of 4472 ± 31 Ma and lower intercept age of 473 ± 38 Ma. The upper intercept age is within error identical to the U‐Pb apatite age of 4452 ± 21 Ma measured in the Chelyabinsk LL5 chondrite. This age is interpreted to reflect a massive collisional resetting event due to a large impact associated with the peak arrival time at the primordial asteroid belt of ejecta debris from the Moon‐forming giant impact on Earth. The lower intercept age is consistent with the most precisely dated Ar‐Ar ages of 470 ± 6 Ma of shocked L chondrites, and the fossil meteorites and extraterrestrial chromite relicts found in Ordovician limestones with an age of 467.3 ± 1.6 Ma in Sweden and China. The lower intercept age reflects a major disturbance related to the catastrophic disruption of the L chondrite parent body most likely associated with the Gefion asteroid family, which produced an initially intense meteorite bombardment of the Earth in Ordovician period and reset and degassed at least approximately 35% of the L chondrite falls today. We predict that the 470 Ma impact event is likely to be found on the Moon and Mars, if not Mercury.  相似文献   
990.
Recent studies have shown that major meteorite groups possess their own characteristic 54Cr values, demonstrating the utility of Cr isotopes for identifying genetic relationships between the planetary materials in conjunction with other classical tools, such as oxygen isotopes. In this study, we performed Cr isotope analyses for whole rocks and chemically separated phases of the new CM2 chondrite, Sutter's Mill (SM 43 and 51). The two whole rocks of Sutter's Mill show essentially identical ε54Cr excesses (SM 43 = +0.95 ± 0.09ε, SM 51 = +0.88 ± 0.07ε), relative to the Earth. These values are the same within error with that of the CM2‐type Murchison (+0.89 ± 0.08ε), suggesting that parent bodies of Sutter's Mill and Murchison were formed from the same precursor materials in the solar nebula. Large ε54Cr excess of up to 29.40ε is observed in the silicate phase of Sutter's Mill, while that of Murchison shows 15.74ε. Importantly, the leachate fractions of both Sutter's Mill and Murchison form a steep linear anticorrelation between ε54Cr and ε53Cr, cross‐cutting the positive correlation previously observed in carbonaceous chondrites. The fact that L4 acid leachate fraction contains higher 54Cr excesses than that of L5 step designed to dissolve refractory minerals suggests that spinel is not a major 54Cr carrier. We also note that L5 contains 53Cr anomalies lower than the solar initial value, suggesting it carries a component of nucleosynthetic anomaly unrelated to the 53Mn decay. We have identified five endmember components of nucleosynthetic origin among the early solar system materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号