首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   1篇
  国内免费   4篇
测绘学   2篇
大气科学   4篇
地球物理   36篇
地质学   49篇
海洋学   61篇
天文学   21篇
综合类   1篇
自然地理   10篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   14篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   9篇
  2008年   11篇
  2007年   3篇
  2006年   8篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   5篇
  2001年   6篇
  2000年   9篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   7篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有184条查询结果,搜索用时 93 毫秒
181.
As a clean form of energy able to replace oil, the demand for LNG (Liquefied Natural Gas) has been increasing. LNG must be stored in a cryogenic temperature of —162°C. The storage tanks now existing throughout the world can be divided into above-ground and inground types. In the Tokyo area, there are now 22 in-ground LNG storage tanks, either in operation or under construction, which are constructed with primary consideration given to safety and earthquake-proof design because of the circumstances around the LNG terminals.

In the feasibility study of a very large-scale, in-ground LNG storage tank, comparative preliminary studies were made of various construction methods. Among them, the method using artificial ground freezing was proposed, in which it was planned to utilize the frozen soil as the means of ground water control and the temporary retaining wall. To confirm the feasibility of the design, a model tank test was conducted by freezing the actual tank yard. The yard ground, composed of sand and silt layers, was artificially frozen 10 m in diameter and 50 m in depth; in the frozen soil a shaft of 4 m in diameter was sunk to a depth 26 m below the ground level for various tests and measurements. The purpose of the test was mainly to confirm the construction method and to examine the agreement between theory and practice.

Although this construction method has not been adopted in the actual tank work, the feasibility of the method itself has been confirmed as a result of the test. In this paper, the outline and major results of the test and analysis are described.  相似文献   

182.
Degree of partial melting of pelitic migmatites from the Aoyama area, Ryoke metamorphic belt, SW Japan is determined utilizing whole-rock trace element compositions. The key samples used in this study were taken from the migmatite front of this area and have interboudin partitions filled with tourmaline-bearing leucosome. These samples are almost perfectly separated into leucosome (melt) and surrounding matrix (solid). This textural feature enables an estimate of the melting degree by a simple mass-balance calculation, giving the result of 5–11 wt.% of partial melting. Similar calculations applied to the migmatite samples, which assume average migmatite compositions to be the residue solid fraction, give degree of melt extraction of 12–14 wt.% from the migmatite zone. The similarity of the estimated melting degree of 5–11 wt.% with that in other tourmaline–leucogranites, such as Harney Peak leucogranite and Himalayan leucogranites, in spite of differences in formation process implies that the production of tourmaline leucogranites is limited to low degrees of partial melting around 10 wt.%, probably controlled by the breakdown of sink minerals for boron such as muscovite and tourmaline at a relatively early stage of partial melting. Because the amount of boron originally available in the pelitic source rock is limited (on average 100 ppm), 10 wt.% of melting locally requires almost complete breakdown of boron sink mineral(s) in the source rock, in order to provide sufficient boron into the melt to saturate it in tourmaline. This, in turn, means that boron-depleted metapelite regions are important candidates for the source regions of tourmaline leucogranites.  相似文献   
183.
Variation of Raman spectra of both natural (F-bearing) and synthetic (F-free) chondrodite samples were studied up to 400 kbar at room temperature. Ambient Raman frequencies for the synthetic sample are in general lower than those for the natural one. This is correlated with a slight expansion of the volume of the synthetic sample due to substitution of OH for F. The frequencies of all Raman bands for both samples increase monotonically with increasing pressure. The positive pressure dependences in the O−H stretch frequencies for both F-free and F-bearing samples are contrary to those for other dense hydrous magnesium silicates. A mechanism involving both the hydrogen-hydrogen repulsion and hydrogen bondings is proposed to explain the abnormal behavior. The effects of substitution of F for OH on both the ambient and high-pressure Raman spectra of chondrodite are also discussed. Received: 19 February 1998 / Revised accepted: 26 June 1998  相似文献   
184.
The relationships between the intrusion of gneissose granitoids and the attainment of regional high‐T conditions recorded in metamorphic rocks from the Ryoke belt of the Mikawa area, central Japan, are explored. Seven gneissose granitoid samples (tonalite, granodiorite, granite) were collected from three distinct plutonic bodies that are mapped as the so‐called “Older Ryoke granitoids.” Based on bulk‐rock compositions and U–Pb zircon ages obtained by laser ablation inductively coupled plasma mass spectrometry, the analyzed granitoids can be separated into two groups. Gneissose granitoids from the northern part of the area give weighted mean 206Pb/238U ages of 99 ±1 Ma (two samples) and 95 ±1 Ma (one sample), whereas those from the southern part yield 81 ±1 Ma (two samples) and 78–77 ±1 Ma (two samples). Regional comparisons allow correlation of the northern granitoids (99–95 Ma) with the Kiyosaki granodiorite, and mostly with the Kamihara tonalite found to the east. The southern granitoids are tentatively renamed as “78–75 Ma (Hbl)?Bt granite” and “81–75 Ma Hbl?Bt tonalite” (Hbl, hornblende; Bt, biotite). and seem to be broadly coeval members of the same magmatic suite. With respect to available age data, no gneissose granitoid from the Mikawa area shows a U–Pb zircon age which matches that of high‐T metamorphism (ca 87 Ma). The southern gneissose granitoids (81–75 Ma), although they occur in the highest‐grade metamorphic zone, do not seem to represent the heat source which produced the metamorphic field gradient with a low dP/dT slope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号