首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   20篇
  国内免费   11篇
测绘学   5篇
大气科学   25篇
地球物理   110篇
地质学   159篇
海洋学   103篇
天文学   85篇
综合类   13篇
自然地理   23篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   19篇
  2019年   14篇
  2018年   11篇
  2017年   20篇
  2016年   11篇
  2015年   9篇
  2014年   15篇
  2013年   26篇
  2012年   15篇
  2011年   18篇
  2010年   17篇
  2009年   24篇
  2008年   30篇
  2007年   22篇
  2006年   23篇
  2005年   29篇
  2004年   16篇
  2003年   15篇
  2002年   19篇
  2001年   8篇
  2000年   18篇
  1999年   11篇
  1998年   8篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   9篇
  1984年   7篇
  1983年   11篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有523条查询结果,搜索用时 15 毫秒
31.
The northern Fossa Magna (NFM) basin is a Miocene rift system produced in the final stages of the opening of the Sea of Japan. It divides the major structure of Japan into two regions, with north-trending geological structures to the NE of the basin and EW trending structures to the west of the basin. The Itoigawa-Shizuoka Tectonic Line (ISTL) bounds the western part of the northern Fossa Magna and forms an active fault system that displays one of the largest slip rates (4–9 mm/year) in the Japanese islands. Deep seismic reflection and refraction/wide-angle reflection profiling were undertaken in 2002 across the northern part of ISTL in order to delineate structures in the crust, and the deep geometry of the active fault systems. The seismic images are interpreted based on the pattern of reflectors, the surface geology and velocities derived from refraction analysis. The 68-km-long seismic section suggests that the Miocene NFM basin was formed by an east dipping normal fault with a shallow flat segment to 6 km depth and a deeper ramp penetrating to 15 km depth. This low-angle normal fault originated as a comparatively shallow brittle/ductile detachment in a high thermal regime present in the Miocene. The NFM basin was filled by a thick (>6 km) accumulation of sediments. Shortening since the late Neogene is accommodated along NS to NE–SE trending thrust faults that previously accommodated extension and produce fault-related folds on their hanging wall. Based on our balanced geologic cross-section, the total amount of Miocene extension is ca. 42 km and the total amount of late Neogene to Quaternary shortening is ca. 23 km.  相似文献   
32.
Tetsuya  Waragai 《Island Arc》2005,14(4):368-377
Abstract   Calcretes can be observed on the surface of old moraines around Batura Glacier in the upper Hunza Valley, Karakoram Mountains, Pakistan. They develop as a calcareous crust cementing small gravels under boulders. In order to understand the genesis of the calcrete crust, a variety of methods were employed: (i) study of mineralogy and geochemistry of a calcrete crust precipitated on the lateral moraine using X-ray diffractometer and electron probe microanalysis; (ii) analysis of solute chemistry of surface water and ice bodies around the Batura Glacier; and (iii) accelerator mass spectrometry 14C dating of the crust itself. The results indicate that the calcrete crust has definite laminated layers composed of a fine-grain and compact calcite layer, and a mineral fragment layer. The chemical composition of the calcite layer is approximately 60% CaO and 1% MgO. The mineral fragment layer consists of rounded grain materials up to 0.2 mm in diameter. It shows a graded bedding structure with fine grains of quartz, albite and muscovite. Meanwhile, as the Paleozoic Pasu limestone is distributed around the terminal of Batura Glacier, Ca cations dissolve in the melt water of the glacier. Accordingly, the calcrete crust is precipitated by decreases in CO2 partial pressure from glacier ice and evaporation of the melt water, including high concentration of Ca2+ at ephemeral streams and small ponds stagnating between the moraine and glacial ice. On the basis of the AMS 14C age, the calcrete is considered to have formed approximately 8200 calibrated years bp under the Batura glacial stage.  相似文献   
33.
Effects of inertial and kinematic forces on pile stresses are studied based on large shaking table tests on pile-structure models with a foundation embedded in dry and liquefiable sand deposits. The test results show that, if the natural period of the superstructure, Tb, is less than that of the ground, Tg, the ground displacement tends to be in phase with the inertial force from the superstructure, increasing the shear force transmitted to the pile. In contrast, if Tb is greater than Tg, the ground displacement tends to be out of phase with the inertial force, restraining the pile stress from increasing. With the effects of earth pressures on the embedded foundation and pile incorporated in, pseudo-static analysis is conducted to estimate maximum moment distribution in pile. It is assumed that the maximum moment is equal to the sum of the two stresses caused by the inertial and kinematic effects if Tb<Tg or the square root of the sum of the squares of the two if Tb>Tg. The estimated pile stresses are in good agreement with the observed ones regardless of the occurrence of soil liquefaction.  相似文献   
34.
Fluid-undersaturated experiments were conducted to determine the phase relations in the simplified peridotite system MgO-SiO2-H2O (MSH) at 11.0-14.5 GPa and 800-1400 °C. Stability relations of dense hydrous magnesium silicates (DHMSs) under fluid-undersaturated conditions were experimentally examined. From the fluid-absent experimental results, we retrieved thermodynamic data for clinohumite, phase A, phase E, and hydrous wadsleyite, consistent with the published data set for dry mantle minerals. With this new data set, we have calculated phase equilibria in the MSH system including dehydration reactions. The dehydration reactions calculated with lower water activities of 0.68-0.60 match the fluid-present experiments of this study above 11.0 GPa and 1000 °C, indicating that considerable amounts of silicate component were dissolved into the fluid phase. The calculated phase equilibria illustrate the stability of the post-antigorite phase A-bearing assemblages. In the cold subducting slab peridotite, phase A + enstatite assemblage survives into the transition zone, whereas phase A + forsterite + enstatite assemblage forms hydrous wadsleyite at a much shallower depth of about 360-km. The slab is subducted with no dehydration reactions occurring when entering the transition zone. The phase equilibria also show the high temperature stability of phase E. Phase E is stable up to 1200 °C at 13.5 GPa, a plausible condition in the mantle of relatively low temperature, i.e., beneath subduction zones. Phase E is a possible water reservoir in the mantle as well as wadsleyite and ringwoodite.  相似文献   
35.
The viscosity of synthetic peridotite liquid has been investigated at high pressures using in-situ falling sphere viscometry by combining a multi-anvil technique with synchrotron radiation. We used a newly designed capsule containing a small recessed reservoir outside of the hot spot of the heater, in which a viscosity marker sphere is embedded in a forsterite + enstatite mixture having a higher solidus temperature than the peridotite. This experimental setup prevents spheres from falling before a stable temperature above the liquidus is established and thus avoids difficulties in evaluating viscosities from velocities of spheres falling through a partially molten sample.

Experiments have been performed between 2.8 and 13 GPa at temperatures ranging from 2043 to 2523 K. Measured viscosities range from 0.019 (± 0.004) to 0.13 (± 0.02) Pa s. At constant temperature, viscosity increases with increasing pressure up to  8.5 GPa but then decreases between  8.5 and 13 GPa. The change in the pressure dependence of viscosity is likely associated with structural changes of the liquid that occur upon compression. By combining our results with recently published 0.1 MPa peridotite liquid viscosities [D.B. Dingwell, C. Courtial, D. Giordano, A. Nichols, Viscosity of peridotite liquid, Earth Planet. Sci. Lett. 226 (2004) 127–138.], the experimental data can be described by a non-Arrhenian, empirical Vogel-Fulcher-Tamman equation, which has been modified by adding a term to account for the observed pressure dependence of viscosity. This equation reproduces measured viscosities to within 0.08 log10-units on average. We use this model to calculate viscosities of a peridotitic magma ocean along a liquid adiabat to a depth of  400 km and discuss possible effects on viscosity at greater pressures and temperatures than experimentally investigated.  相似文献   

36.
37.
The skeletal oxygen isotope ratio of Porites corals is the most frequently used proxy of past seawater temperature and composition for tropical and subtropical oceans. However, field calibration of the proxy signals is often difficult owing to the dual dependence of skeletal oxygen isotope ratio on temperature and the oxygen isotope composition of water. We conducted tank experiments in which we grew Porites spp. colonies for 142 d in thermostated seawater at five temperature settings between 21°C and 29°C under moderate light intensity of 250 μmol m−2 s−1 with a 12:12 light:dark photoperiod. A skeletal isotope microprofiling technique applied along the major growth axis of each colony revealed that the oxygen isotope ratios of newly deposited skeleton in most colonies remained almost constant during tank incubation, thus providing an ideal situation for precise calibration of oxygen isotope ratio proxy signals. However, the oxygen isotope ratios displayed an unusually large intercolony variability (∼1‰) at each temperature setting although the mean slope (∼0.15‰ °C−1) obtained for the temperature-skeletal oxygen isotope ratio relationship was close to previous results. The intercolony variations in the oxygen isotope ratios were apparently caused by kinetic isotope effects related to variations in the skeletal growth rate rather than by species-specific variability or genetic differences within species. No correlation was found between skeletal carbon isotope ratios and temperature. The carbon isotope ratios showed significantly inverse correlation with linear growth rates, suggesting a kinetic isotope control at low growth rates. Observed intercolony variability in skeletal carbon isotope ratios (∼5‰) can be partly attributed to growth-rate-related kinetic isotope effects.  相似文献   
38.
39.
We propose a new runoff model including an outflow process that was applied to two adjacent basins (CL, TL) located in Lambir Hills National Park in north‐central Sarawak, Malaysia. Rainfall, runoff, topography, and soil layer thickness were observed. About 19% of annual runoff was observed in the CL basin (21.97 ha), whereas about 46% was observed in the TL basin (23.25 ha). It was inferred that the CL basin has an outflow because of low base flow, small runoff peak, and excessive water loss. By incorporating the outflow process into the HYdrological CYcle MODEL, good agreement between the data generated by the model and that observed was shown, with the exception of the data from the rainless period. Then, the fitting parameters for each basin were exchanged, except for the outflow parameter, and the characteristics of each basin were compared by calculating virtual runoff. As a result, the low base flow of the CL basin was estimated by the movement of the rainwater that escaped from the basin as deep percolation or lateral flow (11% of rainfall). The potential of the CL basin for mitigating flood and drought appeared to be higher than that of the TL basin. This is consistent with the topographic characteristics of the CL basin, which has a gentler slope than the TL basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号