首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
地球物理   4篇
地质学   2篇
海洋学   2篇
天文学   4篇
  2021年   2篇
  2015年   1篇
  2014年   2篇
  2011年   1篇
  2010年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
We report on time-resolved photometry carried out during the 1995 short outburst and the 1997 long outburst in the eclipsing dwarf nova DV UMa. The revised orbital period is 0.0858526172 (67) d. We detected gigantic superhumps with an amplitude of ∼0.6 mag in the mid-phase of the 1997 outburst, revealing the SU UMa nature of DV UMa. The superhump period is 0.0887 (4) d. The superhumps became less clear during the late phase of the superoutburst, and we found two possible periods of 0.0885 (15) and 0.0764 (15). During both outbursts, the eclipse was wide and shallow near the maximum, and then became narrower and deeper, which is qualitatively well explained by the current disc instability theory.  相似文献   
5.
Iapetus, one of the saturnian moons, has an extreme albedo contrast between the leading and trailing hemispheres. The origin of this albedo dichotomy has led to several hypotheses, however it remains controversial. To clarify the origin of the dichotomy, the key approach is to investigate the detailed distribution of the dark material. Recent studies of impact craters and surface temperature from Cassini spacecraft data implied that sublimation of H2O ice can occur on Iapetus’ surface. This ice sublimation can change the albedo distribution on the moon with time.In this study, we evaluate the effect of ice sublimation and simulate the temporal change of surface albedo. We assume the dark material and the bright ice on the surface to be uniformly mixed with a certain volume fraction, and the initial albedo distribution to incorporate the dark material deposits on the surface. That is, the albedo at the apex is lowest and concentrically increases in a sinusoidal pattern. This situation simulates that dark materials existed around the Iapetus’ orbit billions of years ago, and the synchronously rotating Iapetus swept the material and then deposited it on its surface. The evolution of the surface albedo during 4.0 Gyr is simulated by estimating the surface temperature from the insolation energy on Iapetus including the effect of Saturn’s eccentricity and Iapetus’ obliquity precession, and evaluating the sublimation rate of H2O ice from the Iapetus’ surface.As a result, we found that the distribution of the surface albedo changed dramatically after 4.0 Gyr of evolution. The sublimation has three important effects on the resultant surface albedo. First, the albedo in the leading hemisphere has significantly decreased to approach the minimum value. Second, the albedo distribution has been elongated along the equator. Third, the edge of the low albedo region has become clear. Considering the effect of ice sublimation, the current albedo distribution can be reconstructed from the sinusoidal albedo distribution, suggesting the apex-antapex cratering asymmetry as a candidate for the origin of the albedo dichotomy. From the model analysis, we obtained an important aspect that the depth of the turn-over layer where the darkening process proceeded for 4 Gyr should be an order of 10 cm, which is consistent with evaluation from the Cassini radar observations.  相似文献   
6.
This paper presents a new type of electromagnetic damper with rotating inertial mass that has been developed to control the vibrations of structures subjected to earthquakes. The electromagnetic inertial mass damper (EIMD) consists of a ball screw that converts axial oscillation of the rod end into rotational motion of the internal flywheel and an electric generator that is turned by the rotation of the inner rod. The EIMD is able to generate a large inertial force created by the rotating flywheel and a variable damping force developed by the electric generator. Device performance tests of reduced‐scale and full‐scale EIMDs were undertaken to verify the basic characteristics of the damper and the validity of the derived theoretical formulae. Shaking table tests of a three‐story structure with EIMDs and earthquake response analyses of a building with EIMDs were conducted to demonstrate the seismic response control performance of the EIMD. The EIMD is able to reduce story drifts as well as accelerations and surpasses conventional types of dampers in reducing acceleration responses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
Microbial oceanography is undergoing a dramatic revolution thanks to the rapid development of novel techniques that allow the examination of microbial diversity and functions via molecular methods, including genomic and metagenomic analyses. During the past decade, studies have revealed previously unknown and surprisingly diverse bacterial communities in marine waters. These studies have radically changed our understanding of spatiotemporal patterns in marine bacterial community composition and the distribution of specific genes. However, our knowledge of the role of individual bacterial subgroups in oceanic food webs and biogeochemical cycles remains limited. To embed the internal dynamics of bacterial communities into marine biogeochemistry models, the characteristic parameters of individual bacterial subgroups (i.e., growth, mortality, and utilization of dissolved organic matter) must be determined. Here, we survey the approaches used to assess variation in and factors controlling bacterial communities in marine environments, emphasizing the importance of quantitative studies that examine growth and grazing parameters of bacterial subgroups.  相似文献   
8.
Climate change adaptation has become the current focus of research due to the remarkable potential of climate change to alter the spatial and temporal distribution of global water availability. Although reservoir operation is a potential adaptation option, earlier studies explicitly demonstrated only its historical quantitative effects. Therefore, this article evaluated the possibility of reservoir operation from an adaptation viewpoint for regulating the future flow using the H08 global hydrological model with the Chao Phraya River basin as a case study. This basin is the largest river system in Thailand and has often been affected by extreme weather challenges in the past. Future climate scenarios were constructed from the bias-corrected outputs of three general circulation models from 2080 to 2099 under RCP4.5 and RCP8.5. The important conclusions that can be drawn from this study are as follows: (i) the operation of existing and hypothetical (i.e., construction under planning) reservoirs cannot reduce the future high flows below the channel carrying capacity, although it can increase low flows in the basin. This indicates that changes in the magnitude of future high flow due to climate change are likely to be larger than those achieved by reservoir operation and there is a need for other adaptation options. (ii) A combination of reservoir operation and afforestation was considered as an adaptation strategy, but the magnitude of the discharge reduction in the wet season was still smaller than the increase caused by warming. This further signifies the necessity of combining other structural, as well as non-structural, measures. Overall, this adaptation approach for assessing the effect of reservoir operation in reducing the climate change impacts using H08 model can be applied not only in the study area but also in other places where climate change signals are robust.  相似文献   
9.
The development of bedforms under unidirectional, oscillatory and combined‐flows results from temporal changes in sediment transport, flow and morphological response. In such flows, the bedform characteristics (for example, height, wavelength and shape) change over time, from their initiation to equilibrium with the imposed conditions, even if the flow conditions remain unchanged. These variations in bedform morphology during development are reflected in the sedimentary structures preserved in the rock record. Hence, understanding the time and morphological development in which bedforms evolve to an equilibrium stage is critical for informed reconstruction of the ancient sedimentary record. This article presents results from a laboratory flume study on bedform development and equilibrium development time conducted under purely unidirectional, purely oscillatory and combined‐flow conditions, which aimed to test and extend an empirical model developed in past work solely for unidirectional ripples. The present results yield a unified model for bedform development and equilibrium under unidirectional, oscillatory and combined‐flows. The experimental results show that the processes of bedform genesis and growth are common to all types of flows, and can be characterized into four stages: (i) incipient bedforms; (ii) growing bedforms; (iii) stabilizing bedforms; and (iv) fully developed bedforms. Furthermore, the development path of bedform; growth exhibits the same general trend for different flow types (for example, unidirectional, oscillatory and combined‐flows), bedform size (for example, small versus large ripples), bedform shape (for example, symmetrical or rounded), bedform planform geometry (for example, two‐dimensional versus three‐dimensional), flow velocities and sediment grain sizes. The equilibrium time for a wide range of bed configurations was determined and found to be inversely proportional to the sediment transport flux occurring for that flow condition.  相似文献   
10.
The coordination environment of the sodium ion in the melts of several simple ionic liquids and an Na2O–Al2O3–SiO2 mixture has been investigated by high temperature 23Na NMR measurements. A new high temperature NMR probe was utilized for the measurements of the compositional and temperature dependence of the 23Na NMR chemical shift at temperatures up to 1600?°C. 23Na NMR spectra of ionic liquids, NaCl, NaBr and NaNO3, show two peaks at their solid to liquid transition, corresponding to the solid and liquid state, respectively. The 23Na NMR peak shift in passing from the liquid to the solid is positive. This suggests a decrease in the coordination number for the molten state compared to the crystalline state. The 23Na peak position for the Na2O–Al2O3–SiO2 melts of the composition range Na/Al≥1 shifted almost linearly in the positive direction as a function of both the increased degree of depolymerization, NBO/T, and [Al]/([Al]+[Si]). 23Na MAS-NMR measurement for crystalline silicate compounds of known structure provided a revised relationship between the mean Na–O distances and 23Na chemical shifts. Comparison of the 23Na chemical shift of the melts with that of crystalline silicate compounds suggests that the coordination number of Na in those melts is around 6–8 with little compositional dependence. The 23Na peak position shifted in the negative direction with increasing temperature for sodium silicates, whereas that of aluminosilicates did not show any temperature dependence. The activation energy from the temperature dependence of the 23Na line width shows little compositional dependence, and the value (51~58?kJ/mol) was close to that of the trace Na ion diffusion in NaAlSi3O8 glass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号