首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4869篇
  免费   210篇
  国内免费   52篇
测绘学   122篇
大气科学   403篇
地球物理   1116篇
地质学   1809篇
海洋学   352篇
天文学   868篇
综合类   17篇
自然地理   444篇
  2022年   28篇
  2021年   63篇
  2020年   67篇
  2019年   90篇
  2018年   142篇
  2017年   149篇
  2016年   152篇
  2015年   133篇
  2014年   184篇
  2013年   259篇
  2012年   203篇
  2011年   266篇
  2010年   207篇
  2009年   261篇
  2008年   212篇
  2007年   189篇
  2006年   176篇
  2005年   174篇
  2004年   184篇
  2003年   161篇
  2002年   161篇
  2001年   81篇
  2000年   89篇
  1999年   73篇
  1998年   90篇
  1997年   68篇
  1996年   65篇
  1995年   61篇
  1994年   55篇
  1993年   63篇
  1992年   46篇
  1991年   39篇
  1990年   40篇
  1989年   41篇
  1988年   47篇
  1987年   50篇
  1986年   47篇
  1985年   57篇
  1984年   67篇
  1983年   51篇
  1982年   57篇
  1981年   47篇
  1980年   48篇
  1979年   46篇
  1978年   44篇
  1977年   37篇
  1976年   31篇
  1975年   32篇
  1974年   33篇
  1973年   31篇
排序方式: 共有5131条查询结果,搜索用时 15 毫秒
951.
The Ramgarh structure is a morphological landmark in southeastern Rajasthan, India. Its 200 m high and 3.5–4 km wide annular collar has provoked many hypotheses regarding its origin, including impact. Here, we document planar deformation features, planar fractures, and feather features in quartz grains of the central part of the Ramgarh structure, which confirm its impact origin. The annular collar does not mark the crater rim but represents the outer part of a central uplift of an approximately 10 km diameter complex impact structure. The apparent crater rim is exposed as a low‐angle normal fault and can be traced as lineaments in remote sensing imagery. The central uplift shows a stratigraphic uplift of ~1000 m and is rectangular in shape. It is dissected by numerous faults that are co‐genetic with the formation of the central uplift. The central uplift has a bilateral symmetry along an SW‐NE axis, where a large strike‐slip fault documents a strong horizontal shear component. This direction corresponds to the assumed impact trajectory from the SW toward the NE. The uprange sector is characterized by concentric reverse faults, whereas radial faults dominate downrange. Sandstones of the central uplift are infiltrated by Fe‐oxides and suggest an impact‐induced hydrothermal mineralization overprint. The impact may have occurred into a shallow water environment as indicated by soft‐sediment deformation features, observed near the apparent crater rim, and the deposition of a diamictite layer above them. Gastropods embedded in the diamictite have Middle Jurassic age and may indicate the time of the impact.  相似文献   
952.
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies.  相似文献   
953.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
954.
955.
The analysis of spectroscopic data for 30 Algol-type binaries is presented. All these systems are short period Algols having primaries with spectral types B and A. Dominant spectral lines were identified for the spectra collected and their equivalent widths were calculated. All the spectra were examined to understand presence of mass transfer, a disk or circumstellar matter and chromospheric emission. We also present first spectroscopic and period study for few Algols and conclude that high resolution spectra within and outside the primary minimum are needed for better understanding of these Algol type close binaries.  相似文献   
956.
During the last two decades, the first generation of beam combiners at the Very Large Telescope Interferometer has proved the importance of optical interferometry for high-angular resolution astrophysical studies in the near- and mid-infrared. With the advent of 4-beam combiners at the VLTI, the u ? v coverage per pointing increases significantly, providing an opportunity to use reconstructed images as powerful scientific tools. Therefore, interferometric imaging is already a key feature of the new generation of VLTI instruments, as well as for other interferometric facilities like CHARA and JWST. It is thus imperative to account for the current image reconstruction capabilities and their expected evolutions in the coming years. Here, we present a general overview of the current situation of optical interferometric image reconstruction with a focus on new wavelength-dependent information, highlighting its main advantages and limitations. As an Appendix we include several cookbooks describing the usage and installation of several state-of-the art image reconstruction packages. To illustrate the current capabilities of the software available to the community, we recovered chromatic images, from simulated MATISSE data, using the MCMC software SQUEEZE. With these images, we aim at showing the importance of selecting good regularization functions and their impact on the reconstruction.  相似文献   
957.
The Paleoproterozoic Dhala structure with an estimated diameter of ~11 km is a confirmed complex impact structure located in the central Indian state of Madhya Pradesh in predominantly granitic basement (2.65 Ga), in the northwestern part of the Archean Bundelkhand craton. The target lithology is granitic in composition but includes a variety of meta‐supracrustal rock types. The impactites and target rocks are overlain by ~1.7 Ga sediments of the Dhala Group and the Vindhyan Supergroup. The area was cored in more than 70 locations and the subsurface lithology shows pseudotachylitic breccia, impact melt breccia, suevite, lithic breccias, and postimpact sediments. Despite extensive erosion, the Dhala structure is well preserved and displays nearly all the diagnostic microscopic shock metamorphic features. This study is aimed at identifying the presence of an impactor component in impact melt rock by analyzing the siderophile element concentrations and rhenium‐osmium isotopic compositions of four samples of impactites (three melt breccias and one lithic breccia) and two samples of target rock (a biotite granite and a mafic intrusive rock). The impact melt breccias are of granitic composition. In some samples, the siderophile elements and HREE enrichment observed are comparable to the target rock abundances. The Cr versus Ir concentrations indicate the probable admixture of approximately 0.3 wt.% of an extraterrestrial component to the impact melt breccia. The Re and Os abundances and the 187Os/188Os ratio of 0.133 of one melt breccia specimen confirm the presence of an extraterrestrial component, although the impactor type characterization still remains inconclusive.  相似文献   
958.
Asteroid 2008 TC3 was characterized in a unique manner prior to impacting Earth's atmosphere, making its October 7, 2008, impact a suitable field test for or validating the application of high‐fidelity re‐entry modeling to asteroid entry. The accurate modeling of the behavior of 2008 TC3 during its entry in Earth's atmosphere requires detailed information about the thermophysical properties of the asteroid's meteoritic materials at temperatures ranging from room temperature up to the point of ablation (~ 1400 K). Here, we present measurements of the thermophysical properties up to these temperatures (in a 1 atm. pressure of argon) for two samples of the Almahata Sitta meteorites from asteroid 2008 TC3: a thick flat‐faced ureilite suitably shaped for emissivity measurements and a thin flat‐faced EL6 enstatite chondrite suitable for diffusivity measurements. Heat capacity was determined from the elemental composition and density from a 3‐D laser scan of the sample. We find that the thermal conductivity of the enstatite chondrite material decreases more gradually as a function of temperature than expected, while the emissivity of the ureilitic material decreases at a rate of 9.5 × 10?5 K?1 above 770 K. The entry scenario is the result of the actual flight path being the boundary to the load the meteorite will be affected with when entering. An accurate heat load prediction depends on the thermophysical properties. Finally, based on these data, the breakup can be calculated accurately leading to a risk assessment for ground damage.  相似文献   
959.
Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high‐pressure polymorphs in rock‐forming minerals are known from meteorites and terrestrial impact craters. Here, we investigate the formation of high‐pressure polymorphs of α‐quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α‐quartz in situ by synchrotron powder X‐ray diffraction. Phase transitions of α‐quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s?1, experiments reveal that α‐quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO6 octahedra rather than the rearrangement of the SiO4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.  相似文献   
960.
Lunar meteorite Northwest Africa (NWA) 5744 is a granulitic breccia with an anorthositic troctolite composition that may represent a distinct crustal lithology not previously described. This meteorite is the namesake and first‐discovered stone of its pairing group. Bulk rock major element abundances show the greatest affinity to Mg‐suite rocks, yet trace element abundances are more consistent with those of ferroan anorthosites. The relatively low abundances of incompatible trace elements (including K, P, Th, U, and rare earth elements) in NWA 5744 could indicate derivation from a highlands crustal lithology or mixture of lithologies that are distinct from the Procellarum KREEP terrane on the lunar nearside. Impact‐related thermal and shock metamorphism of NWA 5744 was intense enough to recrystallize mafic minerals in the matrix, but not intense enough to chemically equilibrate the constituent minerals. Thus, we infer that NWA 5744 was likely metamorphosed near the lunar surface, either as a lithic component within an impact melt sheet or from impact‐induced shock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号