首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   798篇
  免费   54篇
  国内免费   49篇
测绘学   20篇
大气科学   88篇
地球物理   220篇
地质学   284篇
海洋学   70篇
天文学   130篇
综合类   29篇
自然地理   60篇
  2022年   14篇
  2021年   13篇
  2020年   18篇
  2019年   11篇
  2018年   28篇
  2017年   25篇
  2016年   23篇
  2015年   36篇
  2014年   28篇
  2013年   26篇
  2012年   34篇
  2011年   44篇
  2010年   38篇
  2009年   46篇
  2008年   34篇
  2007年   38篇
  2006年   22篇
  2005年   21篇
  2004年   16篇
  2003年   23篇
  2002年   15篇
  2001年   17篇
  2000年   23篇
  1999年   21篇
  1998年   22篇
  1997年   17篇
  1996年   16篇
  1995年   15篇
  1994年   9篇
  1993年   18篇
  1992年   15篇
  1991年   10篇
  1990年   9篇
  1989年   10篇
  1988年   10篇
  1987年   8篇
  1986年   9篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1976年   6篇
  1973年   7篇
  1970年   8篇
  1968年   4篇
  1952年   6篇
  1951年   4篇
  1950年   4篇
  1949年   4篇
排序方式: 共有901条查询结果,搜索用时 15 毫秒
131.
海洋沉积物的物质来源的定量、半定量研究,是海洋沉积学的重要课题之一,也是难题之一。本文是从沉积物不同成因组分的含量入手,研究冲绳海中段表层沉积物物质来源的一种尝试。首先介绍了常规法(即镜下鉴定和统计)和碳稳定同位素示踪法的基本途径和计算模式,并对两种方法进行了对比和评价。其次,根据沉积物的具体情况,选择比较合适的方法,定量估算了各站各成因组分的含量。最后根据估算结果,编绘了主要成因组分含量的分布图。  相似文献   
132.
We develop and test a real-time envelope cross-correlation detector for use in seismic response plans to mitigate hazard of induced seismicity. The incoming seismological data are cross-correlated in real-time with a set of previously recorded master events. For robustness against small changes in the earthquake source locations or in the focal mechanisms we cross-correlate the envelopes of the seismograms rather than the seismograms themselves. Two sequenced detection conditions are implemented: After passing a single trace cross-correlation condition, a network cross-correlation is calculated taking amplitude ratios between stations into account. Besides detecting the earthquake and assigning it to the respective reservoir, real-time magnitudes are important for seismic response plans. We estimate the magnitudes of induced microseismicity using the relative amplitudes between master event and detected event. The real-time detector is implemented as a SeisComP3 module. We carry out offline and online performance tests using seismic monitoring data of the Insheim and Landau geothermal power plants (Upper Rhine Graben, Germany), also including blasts from a nearby quarry. The comparison of the automatic real-time catalogue with a manually processed catalogue shows, that with the implemented parameters events are always correctly assigned to the respective reservoir (4 km distance between reservoirs) or the quarry (8 km and 10 km distance, respectively, from the reservoirs). The real-time catalogue achieves a magnitude of completeness around 0.0. Four per cent of the events assigned to the Insheim reservoir and zero per cent of the Landau events are misdetections. All wrong detections are local tectonic events, whereas none are caused by seismic noise.  相似文献   
133.
A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.  相似文献   
134.
宋金  蒋海昆  孟令媛  臧阳 《中国地震》2017,33(2):219-228
本文采用分层粘弹性介质模型计算了汶川地震对芦山震中产生的库仑应力加载的影响,进而结合Dieterich(1994)提出的速率状态摩擦定律给出芦山附近区域6级地震累积发震概率随时间的变化。结果显示,2013年芦山7.0级地震时其累积发震概率达18%,说明汶川地震产生的应力扰动加速了芦山地震的发生。本文还计算了汶川、芦山2次地震对其间"破裂空段"处产生的累积库仑应力扰动的影响,结合背景地震发生率,给出了"破裂空段"处6级地震累积发震概率变化。虽然计算结果可能受到大邑地震、介质模型参数的选取和背景地震发生概率等因素影响而存在一定误差,但"破裂空段"在2次强震应力加载下累积发震概率是不断增大的,因此我们认为"破裂空段"处发生中强地震的紧迫性不断增强。  相似文献   
135.
2017年8月8日四川九寨沟发生MS7.0地震,该地震发生在巴颜喀喇块体的东北边界,震中区域构造条件复杂,是巴颜喀喇块体北侧左旋走滑环境向东侧逆冲挤压环境过渡的位置,附近地区历史强震较多。九寨沟地震是一次主-余型地震,余震活动水平较弱,主震发生后短时间内ML≥4.0余震的“等待时间”存在异常,震后较长时间余震活动恢复到正常状态,序列h值、余震视应力等符合主-余型序列特征。序列b值为0.84,G-R关系推测序列最大余震的震级约为ML5.4(MS5.0),8月9日发生的MS4.8地震是目前该序列的最强余震。通过与1970年以来附近地区7级左右地震序列的对比认为,九寨沟地震与1976年松潘-平武2次7.2级地震序列在余震空间位置、发震构造和震源机制等方面存在较大差异,因此,不具备发育为震群型序列的条件。九寨沟地震主震视应力为0.36~0.38MPa,属于应力下调模型,序列余震的平均视应力水平接近龙门山断裂带附近中小地震的平均背景水平。  相似文献   
136.
In this study, a water‐air two‐phase flow model was employed to investigate the formation, extension, and dissipation of groundwater ridging induced by recharge events in a hypothetical hillslope‐riparian zone, considering interactions between the liquid and gas phases in soil voids. The simulation results show that, after a rain begins, the groundwater table near the stream is elevated instantaneously and significantly, thereby generating a pressure gradient driving water toward both the stream (the discharge of groundwater to the stream) and upslope (the extension of groundwater ridging into upslope). Meanwhile, the airflow upslope triggered by the advancing wetting front moves downward gradually. Therefore, the extension of groundwater ridging into upslope and the downward airflow interact within a certain region. After the rain stops, groundwater ridging near the stream declines quickly while the airflow in the lower part of upslope is still moving into the hillslope. Thus, the airflow upslope mitigates the dissipation of groundwater ridging. Additionally, the development of groundwater ridging under different conditions, including rain intensity, intrinsic permeability, capillary fringe height, and initial groundwater table, was analyzed. Changes in intrinsic permeability affect the magnitude of groundwater ridging near the stream, as well as the downward speed of airflow, thereby generating highly complex responses. The capillary fringe is not a controlling factor but an influence factor on the formation of groundwater ridging, which is mainly related to the antecedent moisture. It was demonstrated that groundwater ridging also occurs where an unsaturated zone occurs above the capillary fringe with a subsurface lateral flow.  相似文献   
137.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   
138.
139.
This study employed a coupled water-air two-phase flow and salt water transport model to analyze the behaviors of generated airflow in unsaturated zones and the fluctuations of salinity at the salt–fresh water interface in a two-layered unconfined aquifer with a sloping beach surface subjected to tidal oscillations. The simulation results show that as the new dynamic steady state including effects of tidal fluctuations is reached through multiple tidal cycles, the dispersion zone in the lower salt water wedge is broadened because fresh water/salt water therein flows continuously landward or seaward during tidal cycles. The upper salt–fresh water interface exhibits more vulnerable to the tidal fluctuations, and the variation of salinity therein is periodic, which is irrelevant to the hydraulic head but is influenced by the direction and velocity of surrounding water-flow. With the tidal level fluctuating, airflow is mainly concentrated in the lower permeable layer due to the restraint of the upper semi-permeable layer, and the time-lag between the pore-air pressure and the tidal level increases with distance from the coastline. The effect of airflow in unsaturated zones can be transmitted downward, causing both the magnitude of salinity and its amplitude in the upper salt–fresh water interface to be smaller for the case with airflow than without airflow due to the resistance of airflow to water-flow. Sensitivity analysis reveal that distributions of airflow in unsaturated zones are affected by the permeability of the upper/lower layer and the van Genuchten parameter of the lower layer, not by the van Genuchten parameter of the upper layer, whereas the salinity fluctuations in the salt–fresh water interface are affected only by soil parameters of the lower layer.  相似文献   
140.
由于地震孕育过程的复杂性和观测技术的局限性,不同地震观测资料表现出异常变化与后续较大地震的对应关系存在不确定性,因此对预测意见进行概率表达是一种科学恰当的做法。本文基于泊松分布的危险区背景地震概率预测和单项预测方法(包括测震、流体、形变、电磁等学科)的历史预测效能,采用贝叶斯定理计算得到单项预测方法的短期或年度地震危险概率预测结果,进而采用综合概率方法,给出基于多种单项预测方法的短期或年度地震危险概率预测结果。短期概率预测初步结果表明,2018年2~9月,中国大陆72%的5级以上地震都位于相对高概率预测区域。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号