首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   2篇
  国内免费   5篇
测绘学   17篇
大气科学   10篇
地球物理   26篇
地质学   107篇
海洋学   3篇
天文学   27篇
自然地理   7篇
  2023年   2篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   5篇
  2013年   12篇
  2012年   7篇
  2011年   15篇
  2010年   8篇
  2009年   8篇
  2008年   9篇
  2007年   11篇
  2006年   9篇
  2005年   10篇
  2004年   8篇
  2003年   10篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1973年   5篇
  1967年   1篇
  1961年   1篇
  1957年   1篇
  1937年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
81.
Abstract— To test different hypotheses of moldavite formation, a major and trace-element study of 25 moldavite tektites and Sm-Nd isotope measurement of three moldavite tektites was completed. The samples were selected from the classical substrewnfields and the newly described locations in Lusatia (Saxony, Germany). Samples with unusual bulk composition were also included. The results confirm earlier studies that the variation in the chemical composition can be explained by single impact and through incomplete mixing of at least three lithographical components dominated by one of the three minerals or mineral groups: dolomite, clay minerals and quartz. An additional endmember, possibly a rare Earth's mantle component, containing high Co, Cr and Ni concentrations is also needed to explain the observed variations in compatible elements of some tektites. Volatile element abundances are low but not necessarily the result of selective volatilization.  相似文献   
82.
Abstract— We investigated the characteristics and history of lunar meteorites Queen Alexandra Range 93069, Yamato 793169 and Asuka 881757 based on the abundances of all stable noble gas isotopes, the concentrations of the radionuclides 10Be, 26Al, 36Cl, and 81Kr, and the abundances of Mg, Al, K, Ca, Fe, Cl, Sr, Y, Zr, Ba, and La. Based on the solar wind and cosmic-ray irradiations, QUE 93069 is the most mature lunar meteorite studied up to now. The 40Ar/36Ar ratio of the trapped component is 1.87 ± 0.16. This ratio corresponds to a time when the material was exposed to solar and lunar atmospheric volatiles ~400 Ma ago. On the other hand, Yamato 793169 and Asuka 881757 contain very little or no solar noble gases, which indicates that these materials resided in the top layer of the lunar regolith only briefly or not at all. For all lunar meteorites, we observe a positive correlation of the concentrations of cosmic-ray produced with trapped solar noble gases. The duration of lunar regolith residence for the lunar meteorites was calculated based on cosmic-ray produced 21Ne, 38Ar, 78Kr, 83Kr, and 126Xe and appropriate production rates that were derived based on the target element abundances and the shielding indicator 131Xe/126Xe. For QUE 93069, Yamato 793169, and Asuka 881757, we obtained 1000 ± 400 Ma, 50 ± 10 Ma, and <1 Ma, respectively. Both Asuka 881757 and Yamato 793169 show losses of radiogenic 4He from U and Th decay and Yamato 793169 also 40Ar loss from K-decay. For Asuka 881757, we calculate a K-Ar gas retention age of 3100 ± 600 Ma and a 244Pu-136Xe fission age of 4240 ± 170 Ma. This age is one of the oldest formation ages ever observed for a lunar basalt. The exposure history of QUE 93069 after ejection from the Moon was derived from the radionuclide concentrations: ejection 0.16 ± 0.03 Ma ago, duration of Moon-Earth transit 0.15 ± 0.02 Ma and fall on Earth <0.015 Ma ago. This ejection event is distinguished temporally from those which produced the other lunar meteorites. We conclude that six to eight events are necessary to eject all the known lunar meteorites.  相似文献   
83.
Abstract– The fall of meteorites has been interpreted as divine messages by multitudinous cultures since prehistoric times, and meteorites are still adored as heavenly bodies. Stony meteorites were used to carve birds and other works of art; jewelry and knifes were produced of meteoritic iron for instance by the Inuit society. We here present an approximately 10.6 kg Buddhist sculpture (the “iron man”) made of an iron meteorite, which represents a particularity in religious art and meteorite science. The specific contents of the crucial main (Fe, Ni, Co) and trace (Cr, Ga, Ge) elements indicate an ataxitic iron meteorite with high Ni contents (approximately 16 wt%) and Co (approximately 0.6 wt%) that was used to produce the artifact. In addition, the platinum group elements (PGEs), as well as the internal PGE ratios, exhibit a meteoritic signature. The geochemical data of the meteorite generally match the element values known from fragments of the Chinga ataxite (ungrouped iron) meteorite strewn field discovered in 1913. The provenance of the meteorite as well as of the piece of art strongly points to the border region of eastern Siberia and Mongolia, accordingly. The sculpture possibly portrays the Buddhist god Vai?ravana and might originate in the Bon culture of the eleventh century. However, the ethnological and art historical details of the “iron man” sculpture, as well as the timing of the sculpturing, currently remain speculative.  相似文献   
84.
The replacement of the late Precambrian Ediacaran biota by morphologically disparate animals at the beginning of the Phanerozoic was a key event in the history of life on Earth, the mechanisms and the time‐scales of which are not entirely understood. A composite section in Namibia providing biostratigraphic and chemostratigraphic data bracketed by radiometric dating constrains the Ediacaran–Cambrian boundary to 538.6–538.8 Ma, more than 2 Ma younger than previously assumed. The U–Pb‐CA‐ID TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fossils to a 410 ka time window of 538.99 ± 0.21 Ma to 538.58 ± 0.19 Ma. The extremely short duration of the faunal transition from Ediacaran to Cambrian biota within less than 410 ka supports models of ecological cascades that followed the evolutionary breakthrough of increased mobility at the beginning of the Phanerozoic.  相似文献   
85.
Abstract— The original mass (15915 g) of the Twannberg IIG (low Ni‐, high P) iron was found in 1984. Five additional masses (12 to 2488 g) were recovered between 2000 and 2007 in the area. The different masses show identical mineralogy consisting of kamacite single crystals with inclusions of three types of schreibersite crystals: cm‐sized skeletal (10.5% Ni), lamellar (17.2% Ni), and 1–3 × 10 μm‐sized microprismatic (23.9% Ni). Masses I and II were compared in detail and have virtually identical microstructure, hardness, chemical composition, cosmic‐ray exposure (CRE) ages, and 10Be and 26Al activities. Bulk concentrations of 5.2% Ni and 2.0% P were calculated. The preatmospheric mass is estimated to have been at least 11,000 kg. The average CRE age for the different Twannberg samples is 230 ± 50 Ma. Detrital terrestrial mineral grains in the oxide rinds of the three larger masses indicate that they oxidized while they were incorporated in a glacial till deposited by the Rhône glacier during the last glaciation (Würm). The find location of mass I is located at the limit of glaciation where the meteorite may have deposited after transport by the glacier over considerable distance. All evidence indicates pairing of the six masses, which may be part of a larger shower as is indicated by the large inferred pre‐atmospheric mass.  相似文献   
86.
Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite   总被引:7,自引:4,他引:3  
The Block IIF satellites feature a new generation of high-quality rubidium clocks for time and frequency keeping and are the first GPS satellites transmitting operational navigation signals on three distinct frequencies. We investigate apparent clock offset variations for the Block IIF-1 (SVN62) spacecraft that have been identified in L1/L2 clock solutions as well as the L1/L5-minus-L1/L2 clock difference. With peak-to-peak amplitudes of 10?C40?cm, these variations are of relevance for future precision point positioning applications and ionospheric analyses. A proper characterization and understanding is required to fully benefit from the quality of the new signals and clocks. The analysis covers a period of 8?months following the routine payload activation and is based on GPS orbit and clock products generated by the CODE analysis center of the International GNSS Service (IGS) as well as triple-frequency observations collected with the CONGO network. Based on a harmonic analysis, empirical models are presented that describe the sub-daily variation of the clock offset and the inter-frequency clock difference. These contribute to a better clock predictability at timescales of several hours and enable a consistent use of L1/L2 clock products in L1/L5-based positioning.  相似文献   
87.
New U–Pb, Re–Os, and 40Ar/39Ar dates are presented for magmatic and hydrothermal mineral phases in skarn- and porphyry-related ores from the Nambija and Pangui districts of the Subandean zone, southeastern Ecuador. Nambija has been one of the main gold-producing centers of Ecuador since the 1980s due to exceptionally high-grade ores (average 15 g/t, but frequently up to 300 g/t Au). Pangui is a recently discovered porphyry Cu–Mo district. The geology of the Subandean zone in southeastern Ecuador is dominated by the I-type, subduction-related, Jurassic Zamora batholith, which intrudes Triassic volcanosedimentary rocks. The Zamora batholith is in turn cut by porphyritic stocks, which are commonly associated with skarn formation and/or porphyry-style mineralization. High precision U–Pb and Re–Os ages for porphyritic stocks (U–Pb, zircon), associated prograde skarn (U–Pb, hydrothermal titanite), and retrograde stage skarn (Re–Os, molybdenite from veins postdating gold deposition) of the Nambija district are all indistinguishable from each other within error (145 Ma) and indicate a Late Jurassic age for the gold mineralization. Previously, gold mineralization at Nambija was considered to be Early Tertiary based on K–Ar ages obtained on various hydrothermal minerals. The new Jurassic age for the Nambija district is slightly younger than the 40Ar/39Ar and Re–Os ages for magmatic–hydrothermal minerals from the Pangui district, which range between 157 and 152 Ma. Mineralization at Nambija and Pangui is associated with porphyritic stocks that represent the last known episodes of a long-lived Jurassic arc magmatism (∼190 to 145 Ma). A Jurassic age for mineralization at Nambija and Pangui suggests that the Northern Andean Jurassic metallogenic belt, which starts in Colombia at 3° N, extends down to 5° S in Ecuador. It also adds a new mineralization style (Au-skarn) to the metal endowment of this belt. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
88.
UBV measurements of the light of the night sky in the auroral zone during three seasons are presented. The mean brightness of the night sky in theV band is found to be equal one 18m1 star (arc sec)–2, with considerable variations. The observed meanB-V andU-B indicies are +0 . m 7 and –1 . m 6, respectively.Light curves of variable stars during strong auroral activities are also shown. On the basis of measurements we briefly discuss the possibility of accurate stellar photometry in the auroral region.  相似文献   
89.
90.
U–Pb and Rb–Sr dating was undertaken in combination with P–T estimates to (1) constrain the time of ultrahigh-pressure (UHP) eclogite formation in the Stadlandet UHP province of Norway, (2) date later crustal melting–migmatization of the eclogite country gneisses, and (3) temporally trace post-migmatite cooling and retrogression under amphibolite facies metamorphic conditions. In contrast to earlier U–Pb studies which used accessory minerals from the gneisses, we focused on the direct dating of minerals defining the HP assemblage. For the eclogite, rutile and omphacite fractions were analyzed for U–Pb, and from an adjacent migmatite leucosome titanites and K-feldspar. For Rb–Sr dating, phengite was measured for the eclogite, and biotite for two leucosome layers of the migmatite–eclogite complex. A U–Pb age of 389±7 (2σ) Ma is obtained if the full set of 12 rutile and five omphacite analyses is regressed (MSWD: 16), and 389±2 Ma for those nine data which strictly satisfy isochron conditions (MSWD: 0.78). The 389-Ma age is interpreted to date equilibration and freezing of the eclogite paragenesis at maximum temperatures of 770 °C, reached during decompression to 1.8 GPa. Decompression from 2.8 to 1.8 GPa occurred in the partial melting domain of granitic crust, with the migmatites being dated at 375±6 Ma by titanite and K-feldspar from an eclogite-adjacent granitic leucosome. This titanite age also shows that the U–Pb chronometer in rutile is very robust to high temperatures—it remained a closed system for at least 14 million years, at temperatures in excess to 650 °C. After decompression and migmatization, exhumation is accompanied by rapid cooling to reach the 300 °C isograde by 357± 9 Ma, determined by a biotite isochron for a leucosome in a slightly shallower structural level. In considering that the time of maximum pressure is bracketed by early zircon crystallization during subduction and later omphacite–rutile equilibration in the eclogites, an exhumation rate of 5 mm/year is deduced for initial exhumation, occurring between 394 and 389 Ma. For subsequent cooling from 770 to 600 °C, we obtain a rate of 2.3±1.3 mm/year. First stages of exhumation most likely occurred under an overall compressional regime, whereas Devonian basin formation is associated to detachment movements during 389–375 Ma exhumation. This period of extension is followed by a much younger, decoupled thermal phase at 327±5 Ma, occurring under static conditions within very restricted zones, most likely in association with the circulation of fluid phases along old discontinuities. Initial isotopic signatures of Sr and Pb substantiate Paleo- to Meso-Proterozoic crust formation times of the Stadlandet UHP province precursor lithologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号