首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   3篇
  国内免费   1篇
大气科学   6篇
地球物理   15篇
地质学   20篇
海洋学   19篇
天文学   7篇
自然地理   3篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   5篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有70条查询结果,搜索用时 67 毫秒
61.
Multiple-rind structure is common among shallow-water pillows with diameters larger than about 1 m in Oamaru, New Zealand, on the Columbia Plateau (USA), and elsewhere. A rind consists of sideromelane, tachylyte, and tachylytic basalt. A multiple rind is a concentric set of repeated rinds in various forms, e. g., a portion of a broken rind thrust under another part, a series of short and detached subparallel rinds, or a pouch-shaped depression. Transitions and combinations of these three forms are common. Multiple-rind structure develops at any part of the pillow perimeter, but does not cover the pillow completely. It is always accompanied by a rupture in the outermost rind. Up to 13 rinds have been observed, but two to four rinds are most common. The multiple-rind structure is formed by implosion resulting from condensation of exsolved H2O. When H2O condenses, a pressure difference between the interior and exterior of a pillow is created. Above a certain threshold pressure difference, the outer skin of a pillow is torn at weak points, such as radial joints, and thrusts under the neighboring skin, buckles to form a pouch-shaped depression, or produces some variation of these. One set of multiple rinds is thus formed. Further exsolution and condensation of H2O in solidifying pillows may cause development of additional rinds. H2O exsolution and condensation and subsequent implosion are limited to low-pressure environments so that multiple-rind structure is characteristic of shallow-water pillow lava.  相似文献   
62.
A numerical experiment using a three dimensional level model was performed to clarify the mechanism generating a strong coastal current, Kyucho, induced by the passage of Typhoon 0406 around the tip of the Tango Peninsula, Japan in June 2004. Wind stress accompanied by Typhoon 0406 was applied to the model ocean with realistic bottom topography and stratification condition. The model well reproduced the characteristics of Kyucho observed by Kumaki et al. (2005), i.e., the strong alongshore current with maximum velocity of 53 cm s−1 and its propagation along the peninsula with propagation speed of about 0.6 m s−1 one half-day after the typhoon’s passage. Coastal-trapped waves (CTW) accompanied by downwelling were induced along the northwest coast of the peninsula by the alongshore wind stress. The energy density flux due to the CTW flowed eastward along the coast, and indicated scattering of the CTW around the eastern coast of the peninsula. In addition, significant near-inertial internal gravity waves were also caused in the offshore region from the west of the Noto Peninsula to the north of the Tango Peninsula by the typhoon’s passage. The energy flux density of the near-inertial fluctuations flowed southward off the Fukui coast, and part of the energy flux was trapped on the tip of the Tango Peninsula, flowing with the coast on its right. It was found that the strong current, Kyucho, at the northeastern tip of the Tango Peninsula was generated by superposition of the near-inertial internal gravity waves and subinertial CTW.  相似文献   
63.
Mooring observations using ADCP, electromagnetic current meters and thermometers were performed to clarify the vertical and horizontal structure of coastal-trapped waves (CTWs) on continental shelf and slope on the eastern side of Sagami Bay, Japan, in August and September 2003. A strong inflow associated with CTW caused by Typhoon 0315 (CTW15) was observed with remarkable downwelling. The maximum current due to CTW15 was over 100 cm s−1, confined to the upper layer shallower than 90 m. The CTW (CTW10) induced by Typhoon 0310, was associated with the coastal upwelling and maximum outflow was 33 cm s−1; the currents were extended near the bottom at 230 m depth. Remarkable discrepancies were found between the current structures of CTWs. CTW15 was explained by superposing the second CTW mode on the first CTW mode, whereas CTW10 was explained by the first CTW mode. The generation and propagation processes of both CTWs were reproduced by numerical experiments using a three-dimensional level model. The model results indicated that the difference of modal characteristics between CTW15 and CTW10 already exists in the CTW generation region and are due to difference of the wind direction, i.e., the typhoon’s path.  相似文献   
64.
Evidence for abrupt coastal uplifts has been found in emerged sessile assemblages in a sea cave at the southern end of the Izu Peninsula, central Japan. We identified five sessile assemblage zones: Zones I to V, in ascending order. The uppermost zone (Zone I), located at an elevation of 2.7–3.5 m above the present‐day mean sea level (amsl), is a hard massive shellcrust consisting mainly of the barnacles Chthamalus challenger and the tube worm Pomatoleios kraussii. Zone II, at 2.35–2.7 m amsl, is dominated by well‐preserved individuals of C. challenger. Zone III, at 2.0–2.35 m amsl, is strongly eroded and consists mainly of C. challenger and P. kraussii. Zone IV, at 1.6–2.0 m amsl, is characterized by the co‐occurrence of very fresh shells of C. challenger and P. kraussii. Zone V (the lowest zone), at 1.0–1.60 m amsl, is characterized by the co‐occurrence of very fresh shells of Saccostrea kegaki and P. kraussii, and by the absence of C. challenger. Radiocarbon dating by accelerator mass spectrometry (AMS) and the presence of modern taxa in the sessile assemblages suggest that three episodes of coastal uplift have occurred in the area, during AD 570–820, AD 1000–1270, and AD 1430–1660, with magnitudes of 0.9–2.0 m, 0.3–0.8 m, and 1.9–2.2 m, respectively.  相似文献   
65.
In this study, we used the statistical downscaling model (SDSM) to estimate mean and extreme precipitation indices under present and future climate conditions for Shikoku, Japan. Specifically, we considered the following mean and extreme precipitation indices: mean daily precipitation, R10 (number of days with precipitation >10 mm/day), R5d (annual maximum precipitation accumulated over 5 days), maximum dry-spell length (MaDSL), and maximum wet-spell length (MaWSL). Initially, we calibrated the SDSM model using the National Center for environmental prediction (NCEP) reanalysis dataset and daily time series of precipitation for ten locations in Shikoku which were acquired from the surface weather observation point dataset. Subsequently, we used the validated SDSM, using data from NCEP and outputs form general circulation models (GCM), to predict future precipitation indices. Specifically, the HadCM3 GCM was run under the special report on emissions scenarios (SRES) A2 and B2 scenarios, and the CGCM3 GCM was run under the SRES A2 and A1B scenarios. The results showed that: (1) the SDSM can reasonably be used to simulate mean and extreme precipitation indices in the Shikoku region; (2) the values of annual R10 were predicated to decrease in the future in northern Shikoku under all climate scenarios; conversely, the values of annual R10 were predicted to increase in the future in the range of 0–15 % in southern and western Shikoku. The values of annual MaDSL were predicted to increase in northern Shikoku, and the values of annual MaWSL were predicted to decrease in northeastern Shikoku; (3) the spatial variation of precipitation indices indicated the potential for an increased occurrence of drought across northeastern Shikoku and an increased occurrence of flood events in the southwestern part of Shikoku, especially under the A2 and A1B scenarios; (4) characteristics of future precipitation may differ between the northern and southern sides of the Shikoku Mountains. Regional variations in extreme precipitation indices were not notably evident in the B2 scenario compared to the other scenarios.  相似文献   
66.
About 2000 active faults are known to exist within the land area of Japan. Most of these active faults have deformed the topographic surfaces which were formed in the late Quaternary, including fluvial terraces; and the formative ages of these terraces are estimated mainly by tephrochronology. Fluvial terraces in the eastern Hokuriku region, comprising the Toyama, Tonami, and Kanazawa Plains, northern central Japan, are widely distributed and have been deformed by reverse active faults. The formative age of terraces in this area has not been reported, as volcanic ash deposits are rarely visible within terrace deposits and the overlying loamy soil, and outcrops of fluvial terraces are quite scarce in this area. In the present study, we carried out a drilling survey on these terraces to obtain samples of the overlying loamy soil and upper part of terrace deposits. From these samples, we extracted some well-known widespread volcanic ash, from which we were able to estimate the approximate age of the terraces and the vertical slip rate of the active faults. Late Quaternary fluvial terraces in eastern Hokuriku are divided into 12 levels: Terraces 1 to 12 in descending order. Widespread tephras such as the Kikai-Tozurahara Tephra (K-Tz: 95 ka) are contained in the lowest part of the loamy soil in Terrace 4 and the Daisen-Kurayoshi Pumice (DKP: 55 ka) is present in the lowest part of the loamy soil in Terrace 6. From the ages and the vertical displacements of the fluvial terraces, the late Quaternary average vertical slip rates of active faults in eastern Hokuriku are estimated to be 0.2–0.9 mm/year (Uozu fault), 0.1–0.4 mm/year (Kurehayama fault), 0.1–0.3 mm/year (Takashozu fault), 0.1–0.4 mm/year (Hohrinji fault), and 0.5–0.8 mm/year (Morimoto-Togashi fault). We also estimated the recurrence interval of earthquakes related to active faults from displacement per event and ages of terraces and no significant difference in vertical displacement per single earthquake for different active faults, and recurrence intervals tend to be inversely proportional to vertical displacement rates. This study demonstrates that a combination of drilling of loamy soil and precise cryptotephra analysis of fluvial terraces can be used to estimate the formative age of the terraces and the average slip rate of active faults in areas where volcanic ash deposits are rare.  相似文献   
67.
Twenty-six of the fifty-seven stone meteorites listed in Huss (1979) from Roosevelt County, New Mexico, have been classified in the present study. Microprobe analyses indicate 15 H type, 9 L type and 2 LL type chondrites. Based on compositional, textural, and locational comparisons, as many as 10 chondrites may be paired to three distinct falls.  相似文献   
68.
Salinity variations in restricted basins like the Baltic Sea can alter their vulnerability to hypoxia (i.e., bottom water oxygen concentrations <2 mg/l) and can affect the burial of phosphorus (P), a key nutrient for marine organisms. We combine porewater and solid-phase geochemistry, micro-analysis of sieved sediments (including XRD and synchrotron-based XAS), and foraminiferal δ18O and δ13C analyses to reconstruct the bottom water salinity, redox conditions, and P burial in the Ångermanälven estuary, Bothnian Sea. Our sediment records were retrieved during the Integrated Ocean Drilling Program (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013. We demonstrate that bottom waters in the Ångermanälven estuary became anoxic upon the intrusion of seawater in the early Holocene, like in the central Bothnian Sea. The subsequent refreshening and reoxygenation, which was caused by gradual isostatic uplift, promoted P burial in the sediment in the form of Mn-rich vivianite. Vivianite authigenesis in the surface sediments of the more isolated part of the estuary ultimately ceased, likely due to continued refreshening and an associated decline in productivity and P supply to the sediment. The observed shifts in environmental conditions also created conditions for post-depositional formation of authigenic vivianite, and possibly apatite formation, at ~8 m composite depth. These salinity-related changes in redox conditions and P burial are highly relevant in light of current climate change. The results specifically highlight that increased freshwater input linked to global warming may enhance coastal P retention, thereby contributing to oligotrophication in both coastal and adjacent open waters.  相似文献   
69.
This paper describes the potential applicability of a hydrological–geotechnical modeling system using satellite-based rainfall estimates for a shallow landslide prediction system. The physically based distributed model has been developed by integrating a grid-based distributed kinematic wave rainfall-runoff model with an infinite slope stability approach. The model was forced by the satellite-based near real-time half-hourly CMORPH global rainfall product prepared by NOAA-CPC. The method combines the following two model outputs necessary for identifying where and when shallow landslides may potentially occur in the catchment: (1) the time-invariant spatial distribution of areas susceptible to slope instability map, for which the river catchment is divided into stability classes according to the critical relative soil saturation; this output is designed to portray the effect of quasi-static land surface variables and soil strength properties on slope instability and (2) a produced map linked with spatiotemporally varying hydrologic properties to provide a time-varying estimate of susceptibility to slope movement in response to rainfall. The proposed hydrological model predicts the dynamic of soil saturation in each grid element. The stored water in each grid element is then used for updating the relative soil saturation and analyzing the slope stability. A grid of slope is defined to be unstable when the relative soil saturation becomes higher than the critical level and is the basis for issuing a shallow landslide warning. The method was applied to past landslides in the upper Citarum River catchment (2,310 km2), Indonesia; the resulting time-invariant landslide susceptibility map shows good agreement with the spatial patterns of documented historical landslides (1985–2008). Application of the model to two recent shallow landslides shows that the model can successfully predict the effect of rainfall movement and intensity on the spatiotemporal dynamic of hydrological variables that trigger shallow landslides. Several hours before the landslides, the model predicted unstable conditions in some grids over and near the grids at which the actual shallow landslides occurred. Overall, the results demonstrate the potential applicability of the modeling system for shallow landslide disaster predictions and warnings.  相似文献   
70.
Hirose  Nariaki  Usui  Norihisa  Sakamoto  Kei  Tsujino  Hiroyuki  Yamanaka  Goro  Nakano  Hideyuki  Urakawa  Shogo  Toyoda  Takahiro  Fujii  Yosuke  Kohno  Nadao 《Ocean Dynamics》2019,69(11):1333-1357

We developed a new system to monitor and forecast coastal and open-ocean states around Japan for operational use by the Japan Meteorological Agency. The system consists of an eddy-resolving analysis model based on four-dimensional variational assimilation and a high (2-km) resolution forecast model covering Japanese coastal areas that incorporates an initialization scheme with temporal and spatial filtering. Assimilation and forecast experiments were performed for 2008 to 2017, and the results were validated against various observation datasets. The assimilation results captured well the observed variability in sea surface temperature, coastal sea level, volume transport, and sea ice. Furthermore, the volume budget for the Japan Sea was significantly improved by the use of the 2-km resolution forecast model compared with the 10-km resolution analysis model. The forecast results indicate that this system has a predictive limit longer than 1 month in many areas, including in the Kuroshio current area south of Japan and the southern Japan Sea. In the forecast results of case studies, the 2017 Kuroshio large meander was well predicted, and warm water intrusions accompanying Kuroshio path variations south of Japan were also successfully reproduced. Sea ice forecasts for the Sea of Okhotsk largely captured the evolution of sea ice in late winter, but sea ice in early winter included relatively large errors. This system has high potential to meet operational requirements for monitoring and forecasting ocean phenomena at both meso- and coastal scales.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号