首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3346篇
  免费   117篇
  国内免费   95篇
测绘学   73篇
大气科学   416篇
地球物理   841篇
地质学   1028篇
海洋学   680篇
天文学   304篇
综合类   50篇
自然地理   166篇
  2023年   12篇
  2022年   23篇
  2021年   44篇
  2020年   50篇
  2019年   66篇
  2018年   139篇
  2017年   127篇
  2016年   148篇
  2015年   95篇
  2014年   179篇
  2013年   229篇
  2012年   148篇
  2011年   210篇
  2010年   195篇
  2009年   195篇
  2008年   169篇
  2007年   183篇
  2006年   149篇
  2005年   131篇
  2004年   109篇
  2003年   99篇
  2002年   99篇
  2001年   77篇
  2000年   81篇
  1999年   57篇
  1998年   45篇
  1997年   42篇
  1996年   25篇
  1995年   39篇
  1994年   19篇
  1993年   17篇
  1992年   22篇
  1991年   18篇
  1990年   18篇
  1989年   13篇
  1988年   14篇
  1987年   24篇
  1986年   16篇
  1985年   15篇
  1984年   28篇
  1983年   31篇
  1982年   22篇
  1981年   17篇
  1980年   26篇
  1979年   12篇
  1978年   7篇
  1977年   17篇
  1975年   15篇
  1974年   10篇
  1973年   7篇
排序方式: 共有3558条查询结果,搜索用时 339 毫秒
131.
We examined the fluvial geochemistry of the Huang He (Yellow River) in its headwaters to determine natural chemical weathering rates on the northeastern Qinghai-Tibet Plateau, where anthropogenic impact is considered small. Qualitative treatment of the major element composition demonstrates the dominance of carbonate and evaporite dissolution. Most samples are supersaturated with respect to calcite, dolomite, and atmospheric CO2 with moderate (0.710-0.715) 87Sr/86Sr ratios, while six out of 21 total samples have especially high concentrations of Na, Ca, Mg, Cl, and SO4 from weathering of evaporites. We used inversion model calculations to apportion the total dissolved cations to rain-, evaporite-, carbonate-, and silicate-origin. The samples are either carbonate- or evaporite-dominated, but the relative contributions of the four sources vary widely among samples. Net CO2 consumption rates by silicate weathering (6-120 × 103 mol/km2/yr) are low and have a relative uncertainty of ∼40%. We extended the inversion model calculation to literature data for rivers draining orogenic zones worldwide. The Ganges-Brahmaputra draining the Himalayan front has higher CO2 consumption rates (110-570 × 103 mol/km2/yr) and more radiogenic 87Sr/86Sr (0.715-1.24) than the Upper Huang He, but the rivers at higher latitudes are similar to or lower than the Upper Huang He in CO2 uptake by silicate weathering. In these orogenic zones, silicate weathering rates are only weakly coupled with temperature and become independent of runoff above ∼800 mm/yr.  相似文献   
132.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
133.
To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their substructures and geometries, and select 20 MC-associated and five sheath-associated storm events. We investigate the relationship between the storm strength indicated by minimum Dst index \((\mathrm{Dst}_{\mathrm{min}})\) and solar wind conditions related to a southward magnetic field. We find that all slopes of linear regression lines for sheath-storm events are steeper (\({\geq}\,1.4\)) than those of the MC-storm events in the relationship between \(\mathrm{Dst}_{\mathrm{min}}\) and solar wind conditions, implying that the efficiency of sheath for the process of geomagnetic storm generations is higher than that of MC. These results suggest that different general solar wind conditions (sheaths have a higher density, dynamic and thermal pressures with a higher fluctuation of the parameters and higher magnetic fields than MCs) have different impact on storm generation. Regarding the geometric encounter of ICMEs, 100% (2/2) of major storms (\(\mathrm{Dst}_{\mathrm{min}} \leq -100~\mbox{nT}\)) occur in the regions at negative \(P_{Y}\) (relative position of the Earth trajectory from the ICME axis in the \(Y\) component of the GSE coordinate) when the eastern flanks of ICMEs encounter the Earth. We find similar statistical trends in solar wind conditions, suggesting that the dependence of geomagnetic storms on 3D ICME–Earth impact geometries is caused by asymmetric distributions of the geoeffective solar wind conditions. For western flank events, 80% (4/5) of the major storms occur in positive \(P_{Y}\) regions, while intense geoeffective solar wind conditions are not located in the positive \(P_{Y}\). These results suggest that the strength of geomagnetic storms depends on ICME–Earth impact geometries as they determine the solar wind conditions at Earth.  相似文献   
134.
A carbon‐rich melt fragment from the Gardnos impact structure has been studied for a better understanding of the preservation and structural form(s) of carbon that have been processed by impact melting. The carbon was analyzed in situ in its original petrographic context within the melt fragment, using high‐resolution techniques including focused ion beam‐transmission electron microscopy and electron energy loss spectroscopy. Results show that the carbon is largely uniform and has a nanocrystalline grain size. The Gardnos carbon has a graphitic structure but with a large c/a ratio indicating disorder. The disorder could be a result of rapid heating to high temperatures during impact, followed by rapid cooling, with not enough time to crystallize into highly ordered graphite. However, temperature distribution during impact is extremely heterogenous, and the disordered Gardnos carbon could also represent material that avoided extreme temperatures, and thus, it was preserved. Understanding the structure of carbon during terrestrial impacts is important to help determine if the history of carbon within extraterrestrial samples is impact related. Furthermore, the degree of preservation of carbon during impact is key for locating and detecting organic compounds in extraterrestrial samples. This example from Gardnos, together with previous studies, shows that not all carbon is lost to oxidation during impact but that impact melting can encapsulate and preserve carbon where it is available.  相似文献   
135.
This study explores the tradeoff relationship between the number of initial attack firefighting resources and the level of fire ignition prevention efforts mitigating the probability of human-made fires in the Republic of Korea, where most fires are caused by human activities. To examine this tradeoff relationship, we develop a hybrid model that combines a robust optimization model with a stochastic simulation model. The robust optimization minimizes the expected number of fires not receiving a pre-defined response, such as the number of firefighting resources that must arrive at the fire within half an hour, subject to budget constraints and uncertainty about the daily number and location of fires. The simulation model produces a set of fire scenarios in which a combination of number, location, ignition time, and intensity of fires occur. Results show that fire ignition prevention is as cost-effective as initial attack firefighting resources given the current budget in the Republic of Korea for reducing the expected number of fires not covered by the predefined response. The mixed policy of fire suppression and fire prevention may produce some gains in efficiency relative to the dominant policy of strong fire suppression strategies.  相似文献   
136.
Arctic river basins are amongst the most vulnerable to climate change. However, there is currently limited knowledge of the hydrological processes that govern flow dynamics in Arctic river basins. We address this research gap using natural hydrochemical and isotopic tracers to identify water sources that contributed to runoff in river basins spanning a gradient of glacierization (0–61%) in Svalbard during summer 2010 and 2011. Spatially distinct hydrological processes operating over diurnal, weekly and seasonal timescales were characterized by river hydrochemistry and isotopic composition. Two conceptual water sources (‘meltwater’ and ‘groundwater’) were identified and used as a basis for end‐member mixing analyses to assess seasonal and year‐to‐year variability in water source dynamics. In glacier‐fed rivers, meltwater dominated flows at all sites (typically >80%) with the highest contributions observed at the beginning of each study period in early July when snow cover was most extensive. Rivers in non‐glacierized basins were sourced initially from snowmelt but became increasingly dependent on groundwater inputs (up to 100% of total flow volume) by late summer. These hydrological changes were attributed to the depletion of snowpacks and enhanced soil water storage capacity as the active layer expanded throughout each melt season. These findings provide insight into the processes that underpin water source dynamics in Arctic river systems and potential future changes in Arctic hydrology that might be expected under a changing climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
137.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   
138.
The soil microbiome that plays important ecological roles in mountains and forests is influenced by anthropogenic and natural causes. Human activity, particularly harvesting or thinning, affects the soil microbiome in forests by altering environmental conditions, such as vegetation, microclimate, and soil physicochemical properties. The purpose of this study was to investigate the effects on forest thinning on the diversity and composition of the soil bacterial community. From next-generation sequencing results of the 16S rRNA gene, we examined differences in soil bacterial diversity and community composition before and after thinning at Mt. Janggunbong, South Korea. We identified 40 phyla, 103 classes, 192 orders, 412 families, 947 genera, and 3,145 species from the soil samples. Acidobacteria and Proteobacteria were the most dominant bacterial phyla in the forest soil of Mt. Janggunbong. Soil bacterial diversity measures (richness, Shannon diversity index, and evenness) at the phylum level increased after thinning, whereas species-level taxonomic richness decreased after thinning. Thinning provided new opportunities for bacterial species in Chloroflexi, Verrucomicrobia, Nitrospirae, and other nondominant bacterial taxa, especially for those not found in Mt. Janggunbong before thinning, to settle and adapt to the changing environment. Our results suggested that thinning affected the diversity and composition of soil bacterial communities in forests and mountains.  相似文献   
139.
In this study, the dB difference and characteristics of krill swarms inhabiting Subarea 48.1, which includes the west and south of the South Shetland Island and the Elephant Island peripheries, were estimated to distinguish Antarctic krill, using acoustics. From April 13 to 24, 2016, acoustic data were collected along 24 survey lines using the frequencies 38 and 120 kHz, and middle trawling was performed at 7 stations. Using the difference between the dB values of two volume backscattering strength (Sv) frequencies (38 and 120 kHz), a clear acoustic distinction could be made between Antarctic krill (4.9 to 12.0 dB) and fish (?4.0 to ?0.2 dB). The distributions and mean Sv of krill swarms in the Elephant Island peripheries and south of South Shetland Island were higher than those in the west of South Shetland Island. The mean length/ height ratio of krill swarms in the west of the South Shetland Island (64.5) was higher than that in the south (35.9) and the Elephant Island peripheries (33.8), with the length of the aggregations exceeding their height. Most krill swarms were distributed between the surface layer (less than 10 m below sea level) and within 200 m of water depth. These results are expected to serve as baseline data for evaluating krill density and biomass by distinguishing them from fish, using acoustics.  相似文献   
140.
The rock bream, Oplegnathus fasciatus, is a common rocky reef game fish in East Asia and recently has become an aquaculture species. Despite its commercial importance, the population genetic structure of this fish species remains poorly understood. In this study, 163 specimens were collected from 6 localities along the coastal waters of Korea and China and their genetic variation was analyzed with mtDNA COI sequences. A total of 34 polymorphic sites were detected which determined 30 haplotypes. The genetic pattern reveals a low level of nucleotide diversity (0.04 ± 0.003) but a high level of haplotype diversity (0.83 ± 0.02). The 30 haplotypes are divided into two major genealogical clades: one that consists of only Zhoushan (ZS, East China Sea) specific haplotypes from the southern East China Sea and the other that consists of the remaining haplotypes from the northern East China Sea, Yellow Sea, Korea Strait, and East Sea/Sea of Japan. The two clades are separated by approximately 330~435 kyBP. Analyses of AMOVA and Fst show a significant population differentiation between the ZS sample and the other ones, corroborating separation of the two genealogical clades. Larval dispersal and the fresh Yangtze River plume are invoked as the main determining factors for this population genetic structure of O. fasciatus. Neutrality tests and mismatch distribution analyses indicate late Pleistocene population expansion along the coastal waters of Korea and China approximately 133–183 kyBP during which there were periodic cycles of glaciations and deglaciations. Such population information needs to be taken into account when stock enhancement and conservation measures are implemented for this fisheries species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号