首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   29篇
  国内免费   5篇
测绘学   19篇
大气科学   40篇
地球物理   119篇
地质学   147篇
海洋学   50篇
天文学   26篇
综合类   2篇
自然地理   29篇
  2023年   3篇
  2022年   6篇
  2021年   13篇
  2020年   15篇
  2019年   12篇
  2018年   24篇
  2017年   21篇
  2016年   27篇
  2015年   21篇
  2014年   11篇
  2013年   27篇
  2012年   31篇
  2011年   25篇
  2010年   26篇
  2009年   16篇
  2008年   25篇
  2007年   15篇
  2006年   18篇
  2005年   8篇
  2004年   15篇
  2003年   10篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   6篇
  1989年   2篇
  1987年   4篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1977年   3篇
  1975年   3篇
  1973年   1篇
  1971年   1篇
排序方式: 共有432条查询结果,搜索用时 15 毫秒
51.
The interaction between the land surface and the atmosphere is a crucial driver of atmospheric processes. Soil moisture and precipitation are key components in this feedback. Both variables are intertwined in a cycle, that is, the soil moisture – precipitation feedback for which involved processes and interactions are still discussed. In this study the soil moisture – precipitation feedback is compared for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season, using precipitation datasets from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), from the German Weather Service (REGNIE) and simulation datasets from the Weather Research and Forecasting (WRF) model and the hydrologically enhanced WRF-Hydro model. WRF and WRF-Hydro differ by their representation of terrestrial water flow. With this setup we want to investigate the strength, sign and variables involved in the soil moisture – precipitation feedback for these two regions. The normalized model spread between the two simulation results shows linkages between precipitation variability and diagnostic variables surface fluxes, moisture flux convergence above the surface and convective available potential energy in both study regions. The soil moisture – precipitation feedback is evaluated with a classification of soil moisture spatial heterogeneity based on the strength of the soil moisture gradients. This allows us to assess the impact of soil moisture anomalies on surface fluxes, moisture flux convergence, convective available potential energy and precipitation. In both regions the amount of precipitation generally increases with soil moisture spatial heterogeneity. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches. At least for the observed moderate soil moisture values and the spatial scale of the Ammer region, the spatial variability of soil moisture is more important for surface-atmosphere interactions than the actual soil moisture content. Overall, we found that soil moisture heterogeneity can greatly affect the soil moisture – precipitation feedback.  相似文献   
52.
The regional terrestrial water cycle is strongly altered by human activities. Among them, reservoir regulation is a way to spatially and temporally allocate water resources in a basin for multi-purposes. However, it is still not sufficiently understood how reservoir regulation modifies the regional terrestrial- and subsequently, the atmospheric water cycle. To address this question, the representation of reservoir regulation into the terrestrial component of fully coupled regional Earth system models is required. In this study, an existing process-based reservoir network module is implemented into NOAH-HMS, that is, the terrestrial component of an atmospheric–hydrologic modelling system, namely, the WRF-HMS. It allows to quantitatively differentiate role of reservoir regulation and of groundwater feedback in a simulated ground-soil-vegetation continuum. Our study focuses on the Poyang Lake basin, where the largest freshwater lake of China and reservoirs of different sizes are located. As compared to streamflow observations, the newly extended NOAH-HMS slightly improves the streamflow and streamflow duration curves simulation for the Poyang Lake basin for the period 1979–1986. The inclusion of reservoir regulation leads to major changes in the simulated groundwater recharges and evaporation from reservoirs at local scale, but has minor effects on the simulated soil moisture and surface runoff at basin scale. The performed groundwater feedback sensitivity analysis shows that the strength of the groundwater feedback is not altered by the consideration of reservoir regulation. Furthermore, both reservoir regulation and groundwater feedback modify the partitioning of the simulated evapotranspiration, thus affecting the atmospheric water cycle in the Poyang Lake region. This finding motivates future research with our extended fully coupled atmospheric–hydrologic modelling system by the community.  相似文献   
53.
An ensemble data assimilation system using the 4-dimensional Local Ensemble Transform Kalman Filter is implemented to a global non-hydrostatic Numerical Weather Prediction model on the cubed-sphere. The ensemble data assimilation system is coupled to the Korea Institute of Atmospheric Prediction Systems Package for Observation Processing, for real observation data from diverse resources, including satellites. For computational efficiency in a parallel computing environment, we employ some advanced software engineering techniques in the handling of a large number of files. The ensemble data assimilation system is tested in a semi-operational mode, and its performance is verified using the Integrated Forecast System analysis from the European Centre for Medium-Range Weather Forecasts. It is found that the system can be stabilized effectively by additive inflation to account for sampling errors, especially when radiance satellite data are additionally used.  相似文献   
54.
Multiple Random Walk Simulation consists of a methodology adapted to run fast simulations if close-spaced data are abundant (e.g., short-term mining models). Combining kriging with the simulation of random walks attempts to approximate traditional simulation algorithm results but at a computationally faster way when there is a large amount of conditioning samples. This paper presents this new algorithm illustrating the situations where the method can be used properly. A synthetic study case is presented in order to illustrate the Multiple Random Walk Simulation and to analyze the speed and goodness of its results against the ones from using Turning Bands Simulation and Sequential Gaussian Simulation.  相似文献   
55.
56.
L’aquifère libre de la Chaouia côtière constitue un exemple des aquifères les plus exploités au Maroc. Ce travail est consacré à l’étude des processus de la salinisation des eaux souterraines par l’analyse physico-chimique de 39 puits répartis dans la zone. Deux types de faciès ont été révélés, l’un est chloruré-sodique dans la frange côtière ; l’autre faciès est de type chloruré bicarbonaté-calcique caractérisant les eaux exploitées dans les calcaires marneux du Crétacé. L’influence marine (aérosols et intrusion marine), la dissolution/précipitation de la roche aquifère et l’infiltration des eaux d’irrigation, sont parmi les causes de l’augmentation de la salinité des eaux souterraines, en plus de l’exploitation excessive de l’eau souterraine.  相似文献   
57.
In this paper, we present the uncertainty analysis of the 2D electrical tomography inverse problem using model reduction and performing the sampling via an explorative member of the Particle Swarm Optimization family, called the Regressive‐Regressive Particle Swarm Optimization. The procedure begins with a local inversion to find a good resistivity model located in the nonlinear equivalence region of the set of plausible solutions. The dimension of this geophysical model is then reduced using spectral decomposition, and the uncertainty space is explored via Particle Swarm Optimization. Using this approach, we show that it is possible to sample the uncertainty space of the electrical tomography inverse problem. We illustrate this methodology with the application to a synthetic and a real dataset coming from a karstic geological set‐up. By computing the uncertainty of the inverse solution, it is possible to perform the segmentation of the resistivity images issued from inversion. This segmentation is based on the set of equivalent models that have been sampled, and makes it possible to answer geophysical questions in a probabilistic way, performing risk analysis.  相似文献   
58.
Authigenic clays are an important control on reservoir quality in lacustrine carbonates but remain challenging to predict. Lacustrine depositional systems respond to climatic variations in rainfall, surface runoff and groundwater input, and evaporation, and result in rapid and frequent changes in lake volume; this is expressed through changing water depth and shoreline position. In the upper portion of the Early Palaeocene Yacoraite Formation of the Salta Basin in Argentina, extensive lacustrine deposits were deposited during the sag phase of rifting. Prior high-resolution stratigraphic studies have suggested that climatic factors control microbial carbonate sequences within a ‘balanced fill’ lake, with variation in the lake level having a major influence on facies association changes. This study characterizes the evolution of facies and mineralogy within the Yacoraite Formation, focusing on the distribution of clay minerals, making a link between the high, medium and low-frequency sequence stratigraphic cycles. The low-frequency transgressive hemicycle of the upper portion of the Yacoraite Formation is comprised of abundant siliciclastic facies, suggesting a wetter period. Microbialites occurring in this interval are coarse-grained and agglutinated. Detrital clay minerals such as illite and chlorite and associated siliciclastic sediments were input to the lake during high-frequency transgressive periods. During high-frequency regressive hemicycles, sedimentation was dominated by carbonate facies with Ca-rich dolomite and the authigenic clays are comprised of chlorite/smectite mixed-layers. By contrast, the low frequency regressive hemicycle records fine-grained agglutinated microbialite with horizons of fibrous calcite, more stoichiometric dolomite, barite and authigenic magnesian smectite. This indicates elevated ion concentrations in the lake under intense evaporation during an arid period. Understanding the conditions that are favourable for formation and preservation of authigenic clays within the lacustrine environment can improve understanding of reservoir quality in comparable economically important deposits.  相似文献   
59.
Recently, the interest in PS-converted waves has increased for several applications, such as sub-basalt layer imaging, impedance estimates and amplitude-versus-offset analysis. In this study, we consider the problem of separation of PP- and PS-waves from pre-stacked multicomponent seismic data in two-dimensional isotropic medium. We aim to demonstrate that the finite-offset common-reflection-surface traveltime approximation is a good alternative for separating PP- and PS-converted waves in common-offset and common shot configurations by considering a two-dimensional isotropic medium. The five parameters of the finite-offset common-reflection-surface are firstly estimated through the inversion methodology called very fast simulated annealing, which estimates all parameters simultaneously. Next, the emergence angle, one of the inverted parameters, is used to build an analytical separation function of PP and PS reflection separation based on the wave polarization equations. Once the PP- and PS-converted waves were separated, the sections are stacked to increase the signal-to-noise ratio using the special curves derived from finite-offset common-reflection-surface approximation. We applied this methodology to a synthetic dataset from simple-layered to complex-structured media. The numerical results showed that the inverted parameters of the finite offset common-reflection-surface and the separation function yield good results for separating PP- and PS-converted waves in noisy common-offset and common shot gathers.  相似文献   
60.
We advance a principle directed to assigning numerical values to free parameters usually present in inversion methods. It may be formulated as: ‘Optimum estimates of free parameters in an inversion procedure must lead, in tests using synthetic data, to solutions whose geometrical expression reflects the main qualitative or semiquantitative geological characteristic of the study area.’ To this end, the interpreter should (i) specify a typical anomalous source geometry which incorporates the most relevant geological information for the study area, (ii) compute the corresponding gravity anomaly and (iii) invert the anomaly for the source geometry finding the numerical values of the free parameters that lead to a solution closest to the typical source. Application of the above methodology to synthetic and real data from the basement relief of a rift basin has asserted its efficacy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号