首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76802篇
  免费   2598篇
  国内免费   3222篇
测绘学   2534篇
大气科学   6574篇
地球物理   14616篇
地质学   31574篇
海洋学   6891篇
天文学   14956篇
综合类   1219篇
自然地理   4258篇
  2022年   874篇
  2021年   1212篇
  2020年   1195篇
  2019年   1203篇
  2018年   4525篇
  2017年   4166篇
  2016年   3376篇
  2015年   1465篇
  2014年   2025篇
  2013年   3086篇
  2012年   3064篇
  2011年   4981篇
  2010年   4421篇
  2009年   5069篇
  2008年   4228篇
  2007年   4723篇
  2006年   2451篇
  2005年   2035篇
  2004年   1915篇
  2003年   1956篇
  2002年   1815篇
  2001年   1459篇
  2000年   1312篇
  1999年   1180篇
  1998年   1126篇
  1997年   1111篇
  1996年   937篇
  1995年   950篇
  1994年   845篇
  1993年   709篇
  1992年   646篇
  1991年   604篇
  1990年   638篇
  1989年   570篇
  1988年   514篇
  1987年   624篇
  1986年   521篇
  1985年   634篇
  1984年   711篇
  1983年   672篇
  1982年   596篇
  1981年   618篇
  1980年   522篇
  1979年   488篇
  1978年   478篇
  1977年   436篇
  1976年   423篇
  1975年   427篇
  1974年   392篇
  1973年   438篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Using one-minute cadence vector magnetograms from Big Bear Solar Observatory (BBSO), we analyze the temporal behavior of derived longitudinal electric currents associated with two flares on July 26, 2002. One of the events is an M1.0 flare which occurred in active region NOAA 10044, while the other is an M8.7 flare in the adjacent region 10039. Rapid changes of magnetic fields in the form of flux emergence are found to be associated with both of these events. However, the temporal behavior of electric currents are very different. For the M1.0 flare, the longitudinal electric current density drops rapidly near the flaring neutral line; while for the M8.7 flare, the current density rapidly increases, confirming the picture of the current-carrying flux emergence. We offer a possible explanation for such a difference: magnetic reconnection at different heights for the two events, near the photosphere for the M1.0 flare, and higher up for the M8.7 flare.  相似文献   
102.
Bedrock fission‐track analysis, high‐resolution petrography and heavy mineral analyses of sediments are used to investigate the relationships between erosion and tectonics in the Western Alps. Along the Aosta Valley cross‐section, exhumation rates based on fission‐track data are higher in the fault‐bounded western block than in the eastern block (0.4–1.5 vs. 0.1–0.3 mm yr−1). Erosion rates based on the analysis of bed‐load in the Dora Baltea drainage display the same pattern and have similar magnitudes in the relative sub‐basins (0.4–0.7 vs. 0.04–0.08 mm yr−1). Results highlight that climate, relief and lithology are not the controlling factors of erosion in the Western Alps. The main driving force behind erosion is instead tectonics that causes the differential upward motion of crustal blocks.  相似文献   
103.
104.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
105.
Abstract— Martian meteorites (MMs) have been launched from an estimated 5–9 sites on Mars within the last 20 Myr. Some 80–89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near‐surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1–2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial‐derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic‐ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ?45 km, ?19 km, and ?10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.  相似文献   
106.
107.
High resolution echelle spectroscopic observations taken with the FEROS spectrograph at the 2.2 m telescope ESO confirm the binary nature of the flare M3.5V star LU Vel (GJ 375, RE J0958-462) previously reported by Christian and Mathioudakis (2002). Emission of similar intensity from both components is detected in the Balmer, Na i D1&D2, He i D3, Ca ii H&K, and Ca ii IRT lines. We have determined precise radial velocities by cross correlation with radial velocity standard stars, which have allowed us to obtain for the first time the orbital solution of the system. The binary consists of two near-equal M3.5V components with an orbital period shorter than 2 days. We have analyzed the behaviour of the chromospheric activity indicators (variability and possible flares). In addition, we have determined its rotational velocity and kinematics.  相似文献   
108.
We develop a new method to estimate the redshift of galaxy clusters through resolved images of the Sunyaev–Zel'dovich effect (SZE). Our method is based on morphological observables which can be measured by actual and future SZE experiments. We test the method with a set of high-resolution hydrodynamical simulations of galaxy clusters at different redshifts. Our method combines the observables in a principal component analysis. After calibrating the method with an independent redshift estimation for some of the clusters, we show – using a Bayesian approach – how the method can give an estimate of the redshift of the galaxy clusters. Although the error bars given by the morphological redshift estimation are large, it should be useful for future SZE surveys where thousands of clusters are expected to be detected; a first preselection of the high-redshift candidates could be done using our proposed morphological redshift estimator. Although not considered in this work, our method should also be useful to give an estimate of the redshift of clusters in X-ray and optical surveys.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号