首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
地球物理   10篇
地质学   18篇
自然地理   3篇
  2017年   3篇
  2014年   2篇
  2011年   5篇
  2009年   2篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有31条查询结果,搜索用时 328 毫秒
21.
The seismic inversion problem is a highly non‐linear problem that can be reduced to the minimization of the least‐squares criterion between the observed and the modelled data. It has been solved using different classical optimization strategies that require a monotone descent of the objective function. We propose solving the full‐waveform inversion problem using the non‐monotone spectral projected gradient method: a low‐cost and low‐storage optimization technique that maintains the velocity values in a feasible convex region by frequently projecting them on this convex set. The new methodology uses the gradient direction with a particular spectral step length that allows the objective function to increase at some iterations, guarantees convergence to a stationary point starting from any initial iterate, and greatly speeds up the convergence of gradient methods. We combine the new optimization scheme as a solver of the full‐waveform inversion with a multiscale approach and apply it to a modified version of the Marmousi data set. The results of this application show that the proposed method performs better than the classical gradient method by reducing the number of function evaluations and the residual values.  相似文献   
22.
Geomorphic threshold conditions have been identifed at which stream patterns change and gully initiation occurs. For both, the threshold conditions are defined by the parameter of “relative shear stress” which is a measure of the energy state of the system and is based on known values of stream slope and mean annual discharge (for patterns) or drainage area (for gullies). The probability of passing from a stream pattern to another, or from stable to gullied valley floors, is a smooth function of relative shear stress and so the thresholds separating the different states of the geomorphic systems are gradational. The singularity of landforms prevents the identification of a sharp threshold, and as a result landform sensitivity will differ within the same area and under the same conditions. Therefore, geomorphic predictions and postdictions will be uncertain, and Quaternary correlations will lack precision.  相似文献   
23.
24.
We studied upper Albian to Turonian shallow-marine shelf deposits (Ajlun Group) of west central Jordan along a NNE-SSW running transect. The carbonate-dominated succession includes few siliciclastic intercalations, claystones and shales, and can be subdivided into five formations. The Naur, Fuheis and Hummar Formations of upper Albian to upper Cenomanian age represent shallow subtidal to supratidal platform environments. The uppermost Cenomanian to middle Turonian Shueib Formation includes deeper water deposits of the inner/mid-shelf and locally TOC-rich black shales. Shallow-marine platform environments once again dominate the Wadi As Sir Formation (middle-upper Turonian). A new multibiostratigraphic framework is based on ammonites (mainly of the middle Cenomanian rhotomagense Zone to the middle Turonian woollgari Zone) and calcareous nannofossils (biozones CC 9–CC 11), supplemented by benthic and planktonic foraminifers and ostracods. It forms the base of a sequence stratigraphic subdivision, containing eight sedimentary sequences (S1–S8), which are separated by four Cenomanian sequence boundaries (CeJo1–CeJo4) and three Turonian sequence boundaries (TuJo1–TuJo3). This scheme allows the correlation of the platform succession from distal to proximal shelf areas in contrast to previous correlations using lithologic units. Furthermore, comparisons between the platform successions and sequence patterns of west central Jordan and those from neighbouring areas allow to differentiate local, regional, and global controlling factors of platform development within the study area.  相似文献   
25.
We investigate the evolution of wear and friction along experimental faults composed of solid rock blocks. This evolution is analyzed through shear experiments along five rock types, and the experiments were conducted in a rotary apparatus at slip velocities of 0.002–0.97 m/s, slip distances from a few millimeters to tens of meters, and normal stress of 0.25–6.9 MPa. The wear and friction measurements and fault surface observations revealed three evolution phases: A) An initial stage (slip distances <50 mm) of wear by failure of isolated asperities associated with roughening of the fault surface; B) a running-in stage of slip distances of 1–3 m with intense wear-rate, failure of many asperities, and simultaneous reduction of the friction coefficient and wear-rate; and C) a steady-state stage that initiates when the fault surface is covered by a gouge layer, and during which both wear-rate and friction coefficient maintain quasi-constant, low levels. While these evolution stages are clearly recognizable for experimental faults made from bare rock blocks, our analysis suggests that natural faults “bypass” the first two stages and slip at gouge-controlled steady-state conditions.  相似文献   
26.
The influence of the northern Atlantic and tropical monsoonal systems, as recorded by the River Nile, on the climate variability of the southeastern Mediterranean was studied in two cores taken by the R/V Marion Dufresne: one core taken SE of Cyprus representing the northern Levantine Basin (core 9501, 980 m water depth) and the other located ˜380 km further south, represents the southeastern Levantine Basin in an area influenced by the River Nile plume (core 9509, 884 m water depth). The study was performed at relatively high resolution using several proxies: δ18O of Globigerinoides ruber, sediment characteristics and index colour parameters in core sections representing the last 86 ka. A low-resolution alkenone sea surface temperature record was also measured. The time frame in both cores was mostly constrained by ‘wiggle’ matching with the nearby well-dated δ18O and δ13C record of the Soreq Cave, which is mainly influenced by the eastern Mediterranean water vapor. The sedimentary record of the southern core is strongly influenced by the River Nile contribution throughout the last 86 ka, as evidenced by the higher sedimentation rates compared with the northern core (20 cm/ka vs. 5 cm/ka), continuously darker sediment colour, and higher TOC values (0.6–0.9 vs. 0.25 wt% not including sapropels). During sapropels S1 and S3, present in both cores, the influence of the River Nile became more widespread, reaching as far as Cyprus. Yet, the influence of the River Nile remained stronger in the south, as evident by the higher TOC values in the southern core throughout the entire 90 ka period and the longer duration of S1 in the southern core. An anomalous low δ18O interval that is not recorded in western Mediterranean occurred between 58 and 49 ka in the Levantine Basin and is more developed in the northern core. This period correlates with D-O interstadial 14 and maximum northern hemisphere insolation during the lastglacial cycle, suggesting that the warming mainly impacted the northern Levant.The Eastern Mediterranean Sea and land area was considerably warmer than the western Mediterranean throughout the LGM – Holocene transition, and the δ18OG. ruber drop of 4.5‰ is significantly greater than the 3‰ shift found for the western Mediterranean δ18OG. bulloides, both differences reflecting an increased continental effect from the western to eastern Mediterranean. Comparison between the marine and the land δ18O records suggests that the origin of rain over the land is composed of mixed signal from the southern and northern Levantine Basin. The study of Δδ18Osea–land variations demonstrates that various factors have influenced the sea–land relationship during the last 90 ka. The ‘amount effect’ has an important influence on rainfall δ18O during interglacial periods (particularly sapropel periods), whereas during glacial periods, increased land distances and elevation differences arising from decrease in sea level may have brought about decrease in δ18O of rainfall due to Rayleigh distillation processes. These influences were superimposed on those of sea surface water δ18O changes brought about by continental ice melting, and the strong effects felt in the southern Levantine Basin of the high River Nile input during periods of enhanced monsoonal activity.  相似文献   
27.
We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently reactivated it. The analysis is part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project that utilizes the access to 3.6 km depth provided by the mining operations. The Pretorius fault is a ~10 km long, oblique-strike-slip fault with displacement of up to 200 m that crosscuts fine to very coarse grain quartzitic rocks in TauTona mine. We identify here three structural zones within the fault-zone: (1) an outer damage zone, ~100 m wide, of brittle deformation manifested by multiple, widely spaced fractures and faults with slip up to 3 m; (2) an inner damage zone, 25–30 m wide, with high density of anastomosing conjugate sets of fault segments and fractures, many of which carry cataclasite zones; and (3) a dominant segment, with a cataclasite zone up to 50 cm thick that accommodated most of the Archaean slip of the Pretorius fault, and is regarded as the ‘principal slip zone’ (PSZ). This fault-zone structure indicates that during its Archaean activity, the Pretorius fault entered the mature fault stage in which many slip events were localized along a single, PSZ. The mining operations continuously induce earthquakes, including the 2004, M2.2 event that rejuvenated the Pretorius fault in the NELSAM project area. Our analysis of the M2.2 rupture-zone shows that (1) slip occurred exclusively along four, pre-existing large, quasi-planer segments of the ancient fault-zone; (2) the slipping segments contain brittle cataclasite zones up to 0.5 m thick; (3) these segments are not parallel to each other; (4) gouge zones, 1-5 mm thick, composed of white ‘rock-flour’ formed almost exclusively along the cataclasite-host rock contacts of the slipping segments; (5) locally, new, fresh fractures branched from the slipping segments and propagated in mixed shear-tensile mode; (6) the maximum observed shear displacement is 25 mm in oblique-normal slip. The mechanical analysis of this rupture-zone is presented in Part II (Heesakkers et al., Earthquake Rupture at Focal Depth, Part II: Mechanics of the 2004 M2.2 Earthquake Along the Pretorius Fault, TauTona mine, South Africa 2011, this volume).  相似文献   
28.
Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a “propagating damage front” and the evolution of a third-body layer.  相似文献   
29.
For 25 years, a plant in Israel manufacturing ammonium perchlorate disposed of untreated wastewater in four unlined ponds. This study explores the transport mechanisms of perchlorate infiltrated from 1965 to 1990 from one of these active storage ponds into a deep (40 m) layered vadose zone and the underlying Israeli coastal aquifer. Perchlorate migration from 1990, when wastewater disposal ceased, until today, with infiltration due only to natural rain (500 mm y−1), was also studied. Several indirect methods were used, including: mass balance in the unsaturated zone profile, δ18O and δ2H profiles below the pond, and a comparison of the same sediment profiles in 2005 and 2007. The isotopic composition of the pore water could be divided into two separate groups: lighter (depleted) and heavier (enriched) samples. All samples in the lighter group were from the shallow vadose zone, above two clayey layers, and represent natural infiltration of rainwater. The enriched samples were from the deeper section of the unsaturated zone (20–40 m) and represent water used for perchlorate manufacturing 14 years prior to drilling. Consequently, the overall maximum infiltration rate was estimated to be 1.4 m y−1. Below the clayey layer almost identical perchlorate concentrations were found along the sediment profile in 2005 and 2007 (two boreholes, 3 m apart). Very different perchlorate profiles were observed above the clayey layers. This suggests that perchlorate below the clay layers (20–40 m) is practically stagnant under the current natural conditions. The reduction in perchlorate concentration in groundwater below the ponds vs. its increased concentration further downgradient supports the contention that the current migration of perchlorate from the vadose zone to the groundwater is very small. We estimate that perchlorate concentration in the groundwater under the infiltration pond, which was 187 mg l−1 in 2004, will reach 10 μg l−1 within about 14 years. The existence of a clayey layer crossing the thick vadose zone was thus found to significantly change the infiltration rate when ponded conditions were replaced with natural precipitation.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号