首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   1篇
地球物理   5篇
地质学   7篇
海洋学   6篇
天文学   1篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2004年   1篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
Aeromagnetic data of the Anti-Atlas Mountains show an important magnetic anomaly along the ‘Major Anti-Atlas Fault’, produced by different mafic and ultramafic rocks of a Neoproterozoic ophiolite complex. The magnetic modelling of Bou Azzer–El Graara ophiolitic suture shows a deep-seated anomaly through the upper continental crust corresponding to a north-dipping subduction. The polarity of the Pan-African subduction in the Anti-Atlas is therefore compatible with the contemporaneous Pan-African orogenic belts, where polarity of subduction dipped away from the West African Craton during the amalgamation of Western Gondwana. To cite this article: A. Soulaimani et al., C. R. Geoscience 338 (2006).  相似文献   
12.
The free molecular flow over an infinite oscillating plane wall under external periodic force is considered. The Boltzmann equation is solved by using moments method with two-stream distribution functions. The boundary condition is obtained by assuming that the reflection of the particles from the solid surface takes place with complete energy accommodation. An analytical form for the velocity (X) and shear stress (Y) at any point is obtained. The results show that the amplitude of both the velocity change (X 1) and the shear stress change (Y 1) due to the periodic external force at the boundary (y=0) is an increasing function of time (t).  相似文献   
13.
The aim of this work is the field hydraulic characterisation of Mnasra soils in northern Morocco, which represents an essential step to study the hydraulic and chemical transports through the vadose zone. We have used a tension infiltrometer associated with a transient axisymmetric infiltration method to determine the hydraulic conductivity, which reduces the duration of measurements. This allows us to characterise a large area with many measurements. Parameters of the characteristic functions K(h) and θ(h) are estimated for six different soils belonging to two geomorphologically different domains: a sandy zone and an alluvial plain. To cite this article: K. Tamoh, A. Maslouhi, C. R. Geoscience 336 (2004).  相似文献   
14.
Magnetotelluric (MT) soundings and gravity methods were employed to study the deep freshwater aquifer in the area north of Abo Zenema city on the eastern side of the Gulf of Suez, Egypt. Seven MT sites and 48 gravity stations were surveyed along northeast–southwest profiles as close as possible to a line perpendicular to the coast of the Gulf of Suez. The MT survey was conducted using high and low frequencies to investigate shallow and deep areas, respectively. One-dimensional inversion was conducted using a heuristic inversion scheme of the Bostick algorithm. The MT data were also inverted with a 2-D smooth model inversion routine using the nonlinear conjugate gradient method to infer variation in vertical and lateral resistivity inside the Earth. A 100-Ohm-m homogeneous half-space initial model was used to invert the TE mode data only. Then, the inverted model obtained from the TE mode data was used as an initial model for inversion of the TM mode data. The inverted model thus obtained from the TM mode data inversion was used as an initial model for the inversion of the joint TE and TM responses. Two-dimensional (2-D) forward modeling of the gravity data was conducted using the 2-D polygon method of Talwani’s algorithm for an arbitrarily shaped body and was based on the subsurface information from the MT survey and the available information about the geological structure of the study area. This method enabled us to obtain the basement structure of the coastal aquifer in the study area. The results from the analysis and the interpretation of MT and gravity data were used to detect and delineate the groundwater coastal aquifer in the study area.  相似文献   
15.
Marine macrophytes sustain valuable epiphytic biodiversity. Nonindigenous macroalgae may induce changes in composition and structure of epifaunal assemblages and therefore support different assemblages from those associated with native species. In this study, differences in faunal community structure between the introduced fucoid Sargassum muticum and the native seagrass Cymodocea nodosa were tested over a year on an intertidal shallow sandy bottom at the southern introduction front, the El Jadida coastline (NW Morocco). Epifaunal community structure consistently differed between macrophytes through seasons, with more species‐rich assemblages associated with S. muticum than C. nodosa despite comparable abundances. The significantly greater epifauna diversity on S. muticum may be related to its structural complexity. However, the species contributing most to differences in assemblages between both macrophytes, such as Steromphala umbilicalis and S. pennanti, were found on both habitats with temporally varying abundances. Some species‐specific affinities were detected (Stenosoma cf. acuminatum, Elasmopus vachoni, Chauvetia brunnea). Nitrogen, dissolved oxygen, suspended matter and temperature were identified as the best explanatory variables contributing to the observed macroepifaunal patterns. This study provides evidence that S. muticum acts as a favourable and additional habitat for epifaunal species and supports a more diverse epifaunal assemblage in this Moroccan seagrass meadow.  相似文献   
16.
Global climate change has resulted in a gradual sea-level rise. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, thereby threatening freshwater habitat and drinking water supplies. On the other hand, sea-level rise, resulting from thermal expansion of ocean waters and increased melting of glaciers and ice caps, is one of the most apparent and widespread consequences of climate change. This phenomenon has been taken into account in all the Assessment Reports published by the Intergovernmental Panel on Climate Change (IPCC). In this paper, salinity intrusion and intrusion length due to possible sea-level rise in the Sebou estuary (Morocco) was investigated. A one-dimensional hydrodynamic-salinity transport model was used for the simulation of the salinity intrusion and associated water quality, with observed field data being used for model calibration and validation. Additionally, the model validation process showed that the model results fit the observed data fairly well. A coupled gas-cycle/climate model was used to generate the climate change scenarios in the studied area that showed sea-level rises varying from 0.3 to 0.9 m for 2100. The models were then combined to assess the impact of future sea-level rise on the salinity distribution and intrusion length in the Sebou estuary. The response of salt intrusion length to changes in important dimensional parameters are presented, showing that the salinity intrusion length is inversely correlated with the river discharge, i.e., a high river discharge results in a reduced salt intrusion and vice versa, and directly with the sea-level rise. Additionally, the magnitude and frequency of the salinity standard violations at the two pump stations were predicted for 2100, showing that the salinity violations under climate change effects can increase to ~45–48% of the times at these locations. Finally, the main objective of this simulation method is to accelerate and facilitate of systems' behavior learning in the current and future situation.  相似文献   
17.
Gully erosion is an important environmental issue with severe impacts. This study aimed to characterize gully erosion susceptibility and assess the capability of information value (InfVal) and frequency ratio (FR) models for its spatial prediction in Ourika watershed of the High Atlas region of Morocco. These two bivariate statistical methods have been used for gully erosion susceptibility mapping by comparing each data layer of causative factor to the existing gully distribution. Weights to the gully causative factors are assigned based on gully density. Gullies have been mapped through field surveys and Google earth high-resolution images. Lithofacies, land use, slope gradient, length-slope, aspect, stream power index, topographical wetness index and plan curvature were considered predisposing factors to gullying. The digitized gullies were randomly split into two parts. Sixty-five percent (65%) of the mapped gullies were randomly selected as training set to build gully susceptibility models, while the remaining 35% cases were used as validation set for the models’ validation. The results showed that barren and sparse vegetation lands and slope gradient above 50% were very susceptible to gully erosion. The ROC curve was used for testing the accuracy of the mentioned models. The analysis confirms that the FR model (AUC 80.61%) shows a better accuracy than InfVal model (AUC 52.07%). The performance of the gully erosion susceptibility map constructed by FR model is greater than that of the map produced by InfVal model. The findings proved that GIS-based bivariate statistical methods such as frequency ratio model could be successfully applied in gully susceptibility mapping in Morocco mountainous regions and in other similar environments. The produced susceptibility map represents a useful tool for sustainable planning, conservation and protection of land from gully processes.  相似文献   
18.
We performed two column experiments to study the impact of different levels of irrigation intensity on the leaching of nitric nitrogen. The experiment was run on a soil packed column and using 200 kg?N/ha as fertilization rate for the first column, and none for the second. In parallel, we carried out digital simulations (mechanist model) to study the transfer of nitrogen through the studied columns followed by an application of the model to various amounts of nitrogen. The impact study of successive irrigations showed that these contribute to the transport and the accumulation of nitric nitrogen of the upper layers towards the deeper layers. The quantity of nitric nitrogen N–NO3 drained by scrubbing was about 191 kg?N/ha for the first column, and 15 kg?N/ha for the second. In addition, the numerical simulations revealed that the precision of the model is satisfactory with an over-estimation of about 20%. To cite this article: M. Ibnoussina et al., C. R. Geoscience 338 (2006).  相似文献   
19.
Salinity is an important parameter influencing the water quality of estuaries, and can constitute a serious problem to society due to the need for freshwater for industry and agriculture. Therefore, the determination of salt intrusion length in estuaries is a challenge for managers as well as scientists in this field. The managers tend to use simple and reliable tools for salinity variation. Although 2-D and 3-D numerical models are common tools for the prediction of salinity intrusion now, analytical models of salinity variation are much more efficient, and also require minimal sets of river data. In this paper, two analytical solutions, Brockway and Savenije used worldwide to assess longitudinal salinity variation in alluvial estuaries, are applied to the Moroccan Atlantic semi-closed estuaries, i.e., Sebou and Loukkos. The solutions are derived from salt convection-dispersion equations, with different assumptions for the dispersion coefficient. The estuaries' bathymetry is described by an exponential function. The performance of these two solutions was evaluated by comparing their results with field-measured salinity data. The Brockway model's salinity predictions performs well to observations especially in downstream reaches of the two estuaries (Sebou: R2 = 0.95, root mean square error [RMSE] = 1.50‰, normalized root mean square error [NRMSE] = 3.45‰; Loukkos: R2 = 0.95, RMSE = 1.13‰, NRMSE = 3.01‰), while the Savenije model outperformed the Brockway's model and is better to predict salt intrusion length and salinity variation along the two estuaries (Sebou: R2 = 0.97, RMSE = 1.15‰, NRMSE = 2.85‰; Loukkos: R2 = 0.98, RMSE = 0.95‰, NRMSE = 1.94‰). This revealed that both analytical solutions apply well to the estimation of salinity variation and the prediction of salt intrusion in these two estuaries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号