首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1863篇
  免费   109篇
  国内免费   11篇
测绘学   33篇
大气科学   153篇
地球物理   480篇
地质学   822篇
海洋学   195篇
天文学   207篇
综合类   8篇
自然地理   85篇
  2024年   4篇
  2023年   11篇
  2022年   29篇
  2021年   41篇
  2020年   39篇
  2019年   42篇
  2018年   89篇
  2017年   98篇
  2016年   112篇
  2015年   81篇
  2014年   119篇
  2013年   159篇
  2012年   75篇
  2011年   145篇
  2010年   119篇
  2009年   132篇
  2008年   100篇
  2007年   81篇
  2006年   63篇
  2005年   47篇
  2004年   55篇
  2003年   39篇
  2002年   38篇
  2001年   27篇
  2000年   23篇
  1999年   16篇
  1998年   12篇
  1997年   14篇
  1996年   12篇
  1995年   8篇
  1994年   19篇
  1993年   10篇
  1992年   10篇
  1991年   14篇
  1990年   6篇
  1989年   11篇
  1988年   3篇
  1987年   8篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   7篇
  1979年   7篇
  1977年   5篇
  1975年   7篇
  1974年   4篇
  1973年   4篇
  1962年   2篇
排序方式: 共有1983条查询结果,搜索用时 15 毫秒
51.
When chromated copper arsenate (CCA)-treated wood is removed from service and turns into waste, the contents of Cu, Cr and As remain high due to the strong fixation of CCA in the wood. This high content of toxic compounds presents a disposal challenge. Incineration of CCA-treated waste wood is not allowed in Denmark; instead, the wood is to be land-filled until new methods for handling the wood are available. Since the amounts of CCA-treated wood being removed from service is expected to increase in the years to come, the need for finding alternative handling methods is very relevant. In this study, the usefulness of Electrodialytic Remediation was demonstrated for handling of CCA-treated waste wood in pilot scale. The electrodialytic remediation method, which uses a low-level direct current (DC) as the cleaning agent, combines electrokinetic movement of ions in the wood matrix with the principles of electrodialysis. It has previously been shown that it is possible to remove Cu, Cr and As from CCA-treated wood using electrodialytic remediation in laboratory scale, but until now, the method had not been studied in large scale. The pilot-scale plant used in this study was designed to contain up to 2 m3 wood chips. Six remediation experiments were carried out. In these experiments, the process was up-scaled stepwise by increasing the distance between the electrodes from initially 60 cm to finally 150 cm. The remediation time was varied between 11 and 21 days, and phosphoric acid and/or oxalic acid was used to facilitate the desorption of CCA from the wood. In the most successful of the experiments carried out, the concentration of CCA in the wood was reduced by up to 82% for Cr, 88% for Cu and at least 96% for As.  相似文献   
52.
Numerous studies have been conducted with electrochemical removal of heavy metals from spiked kaolinite. Meanwhile, when moving from kaolinite to real soils, new factors must be taken into account—factors influencing, e.g., the buffering capacity of the soil against acidification and the adsorption/desorption processes of the heavy metals. The present study gives some examples where it is necessary to use an enhancement solution to aid desorption of Cu, Zn and Pb during electrodialytic treatment. Dependent on the composition of the pollution, different choices can be made. In the case of a Cu-polluted calcareous soil, ammonia may be used as enhancement solution, due to the formation of charged complexes between ammonia and Cu. Thus, Cu is mobile at high pH when ammonia is added and Cu can be removed without dissolving the calcareous parts. Zn is also mobilized by ammonia, but to a lesser extent than Cu. In the case of Cu, Zn and Pb at the same time, alkaline ammonium citrate may be a solution. It was shown that this enhancement solution could mobilize these three pollutants, but optimization of concentration and pH of the ammonium citrate is still needed. When choosing a remediation scheme for electrochemical treatment of an actual industrially polluted soil, this scheme must be chosen on basis of characterization of soil and pollution combination.  相似文献   
53.
A high-resolution record of Pb deposition in Rhode Island over the past 250 yr was constructed using a sediment core from the anoxic Pettaquamscutt River basin. The sedimentary Pb concentration record shows the well-described maximum associated with leaded gasoline usage in the United States. Diminished Pb variability during recorded periods of local industrial activity (1735 to 1847) supports the greater importance of regional atmospheric lead transport vs. local inputs. The Pb isotopic composition at this site shows a clear maximum in anthropogenic 206Pb/207Pb in the mid-1800s. Similar peaks have also been observed in sediments from Chesapeake Bay and the Great Lakes, suggesting a common source. Possible causes for this event include mining and smelting of Pb ores in the Upper Mississippi Valley district, which accounted for almost all Pb production in the United States in that period. The timing of this event can provide an important stratigraphic marker for sediments deposited in the past 200 yr in the Northeastern United States. The downcore profile of anthropogenic 206Pb/207Pb provides a classic example of how changes in the mixture of ores for production of tetraethyl lead caused a regional-scale shift in the sedimentary record, and suggests that coal could have played a secondary role in Pb emissions after 1920.  相似文献   
54.
Cesium-137 derived from the explosion of the Chernobyl reactor in 1986 was preserved in anoxic sediments from a coastal environment in southern Rhode Island. Although the radioactive plume was detected in surface air samples at several locations in the United States, this is the first known record of a Chernobyl 137Cs peak in sediments from North America. The inventory of Chernobyl 137Cs that was preserved in the Pettaquamscutt River is small compared to European counterparts and should only be detectable for the next 15-20 yr. However, the presence of two 137Cs peaks (1963 and 1987) identifies a well-dated segment of the sediment column that could be exploited in understanding the decomposition and preservation of terrestrial and aquatic organic matter. Different methods for calculating the 210Pb chronology were also evaluated in this study and checked against independent varve counting. The end result is a detailed chronology of a site well suited for reconstruction of historical records of environmental change.  相似文献   
55.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   
56.
Exceptional rainfall events cause significant losses of soil, although few studies have addressed the validation of model predictions at field scale during severe erosive episodes. In this study, we evaluate the predictive ability of the enhanced Soil Erosion and Redistribution Tool (SERT‐2014) model for mapping and quantifying soil erosion during the exceptional rainfall event (~235 mm) that affected the Central Spanish Pyrenees in October 2012. The capacity of the simulation model is evaluated in a fallow cereal field (1.9 ha) at a high spatial scale (1 × 1 m). Validation was performed with field‐quantified rates of soil loss in the rills and ephemeral gullies and also with a detailed map of soil redistribution. The SERT‐2014 model was run for the six rainfall sub‐events that made up the exceptional event, simulating the different hydrological responses of soils with maximum runoff depths ranging between 40 and 1017 mm. Predicted average and maximum soil erosion was 11 and 117 Mg ha?1 event?1, respectively. Total soil loss and sediment yield to the La Reina gully amounted to 16.3 and 9.0 Mg event?1. These rates are in agreement with field estimations of soil loss of 20.0 Mg event?1. Most soil loss (86%) occurred during the first sub‐event. Although soil accumulation was overestimated in the first sub‐event because of the large amount of detached soil, the enhanced SERT‐2014 model successfully predicted the different spatial patterns and values of soil redistribution for each sub‐event. Further research should focus on stream transport capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
57.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
58.
We investigate the influence of mantle flow relative to the lithosphere on subduction dynamics. We use 2D thermo‐mechanical models assuming incompressible non‐Newtonian fluid rheology. Different mantle flow velocities consistent with absolute plate motion models are tested, as well as both directions of flow, either sustaining or opposing slab dip. The effects of different inflow/outflow velocity profiles, slab strengths and upper–lower mantle viscosity contrasts are also evaluated. Slab dip deviations between models with opposite mantle flow directions range from 37° for relatively strong slabs (ηmax = 1025 Pa s) to 50° for weaker slabs (ηmax = 1024 Pa s), accounting for a significant amount of natural slab dip variability. For imposed mantle flow supporting the slab, the initial stage of slab steepening is followed by a stage of continuous slab dip decrease. This slab shallowing eventually leads to mantle wedge closure, subduction cessation and slab break‐off, possibly driving subduction flips.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号