首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2817篇
  免费   198篇
  国内免费   32篇
测绘学   84篇
大气科学   297篇
地球物理   836篇
地质学   1089篇
海洋学   236篇
天文学   358篇
综合类   16篇
自然地理   131篇
  2023年   12篇
  2022年   40篇
  2021年   79篇
  2020年   79篇
  2019年   65篇
  2018年   103篇
  2017年   118篇
  2016年   179篇
  2015年   135篇
  2014年   176篇
  2013年   251篇
  2012年   212篇
  2011年   173篇
  2010年   157篇
  2009年   132篇
  2008年   113篇
  2007年   74篇
  2006年   108篇
  2005年   71篇
  2004年   70篇
  2003年   61篇
  2002年   85篇
  2001年   65篇
  2000年   28篇
  1999年   23篇
  1998年   29篇
  1997年   24篇
  1996年   16篇
  1995年   36篇
  1994年   18篇
  1993年   12篇
  1992年   13篇
  1991年   22篇
  1990年   15篇
  1989年   13篇
  1987年   12篇
  1986年   11篇
  1985年   21篇
  1984年   18篇
  1983年   17篇
  1982年   11篇
  1981年   10篇
  1980年   8篇
  1979年   13篇
  1978年   7篇
  1976年   8篇
  1975年   9篇
  1974年   7篇
  1973年   11篇
  1969年   7篇
排序方式: 共有3047条查询结果,搜索用时 31 毫秒
991.
A topological representation of a rural catchment is proposed here in addition to the generally used topographic drainage network. This is an object‐oriented representation based on the identification of the inlets and outlets for surface water flow on each farmer's field (or plot) and their respective contributing areas and relationships. It represents the catchment as a set of independent plot outlet trees reaching the stream, while a given plot outlet tree represents the pattern of surface flow relationships between individual plots. In the present study, we propose to implement functions related to linear and surface elements of the landscape, such as hedges or road networks, or land use, to obtain what we call a landscape drainage network which delineates the effective contributing area to the stream, thus characterizing its topological structure. Landscape elements modify flow pathways and/or favour water infiltration, thus reducing the area contributing to the surface yield and modifying the structure of the plot outlet trees. This method is applied to a 4·4‐km2 catchment area comprising 43 955 pixels and 312 plots. While the full set of 164 plot outlet trees, with an average of 7 plots per tree, covers 100% of the total surface area of the catchment, the landscape drainage network comprises no more than 37 plot outlet trees with an average of 2 plots per tree, accounting for 52 and 7% of the catchment surface area, when taking account of linear elements and land use, respectively. This topological representation can be easily adapted to changes in land use and land infrastructure, and provides a simple and functional display for intercomparison of catchments and decision support regarding landscape and water management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
992.
993.
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year‐round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration‐to‐recharge rates were elevated, while low evapotranspiration‐to‐recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
994.
995.
996.
997.
The hydrogeological behaviour of fault zones in carbonate aquifers is often neglected in conceptual and numerical models. Furthermore, no information is available regarding the relationships between piezometric levels when significant compartmentalization occurs due to the occurrence of low‐flow fault zones. The aim of this study was to refine the conceptualization of subsurface flow in faulted carbonate aquifers and to analyse relationships between sub‐basins within a compartmentalized aquifer system in Southern Italy. The interactions between compartments that straddle low‐flow faults were investigated over four hydrologic years using a statistical approach to compare (i) the hydraulic heads within two wells located up‐ and down‐gradient of tectonic discontinuities as well as (ii) the rainfall and piezometric levels. The results of this study suggest that a set of barriers exists between the wells, and, therefore, the total head loss observed between the wells (approximately 80 m) should be distributed across several aquitards, with one aquitard exhibiting a relatively high permeability or low degree of integrity. Due to slight differences in permeability, transient conditions in aquitards can occur over relatively short periods, which is in agreement with the results of the statistical data analysis. Consequently, rather than being caused by pure aquitards, aquifer system compartmentalization likely results from slight differences in the permeability between lower‐permeability fault zones and adjacent higher‐permeability protoliths. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
998.
The need to understand and simulate hydrological phenomena and their interactions, and the impact of anthropogenic and climate changes on natural environments have promoted the study of evaporation from bare soils in arid climates. In closed Altiplano basins, such as those encountered in arid and hyper arid basins in northern Chile, evaporation from shallow groundwater is the main source of aquifer depletion, and thus, its study is crucial for water resources management. The objective of this work is to understand the mechanisms of evaporation in saline soils with shallow water tables, in order to better quantify evaporation fluxes and improve our understanding of the water balance in these regions. To achieve this objective, a model that couples fluid flow with heat transfer was developed and calibrated using column experiments with saline soils from the Huasco salt flat basin, Chile. The model enables determination of both liquid and water vapour fluxes, as well as the location of the evaporation front. Experimental results showed that salt transport inside the soil profile modified the water retention curve, highlighting the importance of including salt transport when modelling the evaporation processes in these soils. Indeed, model simulations only agreed with the experimental data when the effect of salt transport on water retention curves was taken into account. Model results also showed that the evaporation front is closer to the soil surface as the water table depth reduces. Therefore, the model allows determining the groundwater level depth that results in disconnection of liquid fluxes in the vadose zone. A sensitivity analysis allowed understanding the effect of water‐flux enhancements mechanisms on soil evaporation. The results presented in this study are important as they allow quantifying the evaporation that occurs in bare soils from Altiplano basins, which is typically the main water discharge in these closed basins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
999.
The discovery of a new Cretaceous/Palaeogene (K/Pg) bathyal marine sequence on Gorgonilla Island, SW Colombia, extends the presence of Chicxulub impact spherule deposits to the Pacific region of northern South America and to the Eastern Pacific Ocean. The Gorgonilla spherule layer is approximately 20 mm thick and consists of extraordinarily well‐preserved glass spherules up to 1.1 mm in diameter. About 70–90% of the spherules are vitrified, and their chemical composition is consistent with Haiti (Beloc) impact glass spherules. Normal size‐grading, delicate spherule textures, welded melt components and an absence of bioturbation or traction transport suggest that the Gorgonilla spherule layer represents an almost undisturbed settling deposit.  相似文献   
1000.
Na–HCO3–CO2-rich thermomineral waters issue in the N of Portugal, within the Galicia-Trás-os-Montes region, linked to a major NNE-trending fault, the so-called Penacova-Régua-Verin megalineament. Along this tectonic structure different occurrences of CO2-rich thermomineral waters are found: Chaves hot waters (67 °C) and also several cold (16.1 °C) CO2-rich waters. The δ2H and δ18O values of the thermomineral waters are similar to those of the local meteoric waters. The chemical composition of both hot and cold mineral waters suggests that water–rock reactions are mainly controlled by the amount of dissolved CO2 (g) rather than by the water temperature. Stable carbon isotope data indicate an external CO2 inorganic origin for the gas. δ13CCO2 values ranging between ? 7.2‰ and ? 5.1‰ are consistent with a two-component mixture between crustal and mantle-derived CO2. Such an assumption is supported by the 3He/4He ratios measured in the gas phase, are between 0.89 and 2.68 times the atmospheric ratio (Ra). These ratios which are higher than that those expected for a pure crustal origin (≈ 0.02 Ra), indicating that 10 to 30% of the He has originated from the upper mantle. Release of deep-seated fluids having a mantle-derived component in a region without recent volcanic activity indicates that extensive neo-tectonic structures originating during the Alpine Orogeny are still active (i.e., the Chaves Depression).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号