首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3254篇
  免费   1271篇
  国内免费   16篇
测绘学   69篇
大气科学   48篇
地球物理   2056篇
地质学   1331篇
海洋学   211篇
天文学   559篇
综合类   1篇
自然地理   266篇
  2023年   1篇
  2022年   1篇
  2021年   36篇
  2020年   60篇
  2019年   197篇
  2018年   203篇
  2017年   294篇
  2016年   340篇
  2015年   353篇
  2014年   374篇
  2013年   427篇
  2012年   305篇
  2011年   288篇
  2010年   270篇
  2009年   180篇
  2008年   231篇
  2007年   157篇
  2006年   125篇
  2005年   122篇
  2004年   106篇
  2003年   116篇
  2002年   101篇
  2001年   92篇
  2000年   90篇
  1999年   19篇
  1998年   8篇
  1997年   9篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
排序方式: 共有4541条查询结果,搜索用时 62 毫秒
981.
982.
983.
In this first part of the work, we develop macroscopic models for migration and diffusion–migration of ionic species in saturated porous media, based on periodic homogenization. The prior application is chloride transport in cementitious materials. The dimensional analysis of Nernst–Planck equation lets appear to dimensionless numbers characterizing the ionic transfer in the porous medium. Using experimental data obtained from electrodiffusion tests on cement‐based materials (Part II), these dimensionless numbers are linked to the perturbation parameter ?. For a strong imposed electrical field, the asymptotic expansion of Nernst–Planck equation leads to a macroscopic model where the migration is predominant. For a weak imposed electrical field or in natural diffusion, we obtain a macroscopic model coupling diffusion and migration at the same order. In both models, the expression of the homogenized diffusion tensor is identical and only involves the geometric properties of the material microstructure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
984.
Stromatic metatexites occurring structurally below the contact with the Ronda peridotite (Ojén nappe, Betic Cordillera, S Spain) are characterized by the mineral assemblage Qtz+Pl+Kfs+Bt+Sil+Grt+Ap+Gr+Ilm. Garnet occurs in low modal amount (2–5 vol.%). Very rare muscovite is present as armoured inclusions, indicating prograde exhaustion. Microstructural evidence of melting in the migmatites includes pseudomorphs after melt films and nanogranite and glassy inclusions hosted in garnet cores. The latter microstructure demonstrates that garnet crystallized in the presence of melt. Re‐melted nanogranites and preserved glassy inclusions show leucogranitic compositions. Phase equilibria modelling of the stromatic migmatite in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2–O2–C (MnNCaKFMASHOC) system with graphite‐saturated fluid shows P–T conditions of equilibration of 4.5–5 kbar, 660–700 °C. These results are consistent with the complete experimental re‐melting of nanogranites at 700 °C and indicate that nanogranites represent the anatectic melt generated immediately after entering supersolidus conditions. The P–T estimate for garnet and melt development does not, however, overlap with the low‐temperature tip of the pure melt field in the phase diagram calculated for the composition of preserved glassy inclusions in garnet in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) system. A comparison of measured melt compositions formed immediately beyond the solidus with results of phase equilibria modelling points to the systematic underestimation of FeO, MgO and CaO in the calculated melt. These discrepancies are present also when calculated melts are compared with low‐T natural and experimental melts from the literature. Under such conditions, the available melt model does not perform well. Given the presence of melt inclusions in garnet cores and the P–T estimates for their formation, we argue that small amounts (<5 vol.%) of peritectic garnet may grow at low temperatures (≤700 °C), as a result of continuous melting reactions consuming biotite.  相似文献   
985.
Modelling failure in geomaterials, concrete or other quasi‐brittle materials and proper accounting for size effect, geometry and boundary effects are still pending issues. Regularised failure models are capable of describing size effect on specimens with a specific geometry, but extrapolations to other geometries are rare, mostly because experimental data presenting size effect for different geometries and for the same material are lacking. Three‐point bending fracture tests of geometrically similar notched and unnotched specimens are presented. The experimental results are compared with numerical simulations performed with an integral‐type non‐local model. Comparisons illustrate the shortcomings of this classical formulation, which fails to describe size effect over the investigated range of geometries and sizes. Finally, experimental results are also compared with the universal size effect law. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
986.
We present the first fission‐track results from the Grenvillian Oaxacan Complex, southern Mexico. Time–temperature modelling of the data indicates that two significant Mesozoic cooling episodes are recorded in the Oaxacan Complex and these are interpreted as resulting from exhumation. The older cooling event took place from the Late Triassic to Middle Jurassic and is possible linked to the break‐up of Pangea (including the initial opening of the Gulf of Mexico during the Jurassic). The younger exhumation period in the Early Cretaceous is contemporaneous with the final stages of rifting of the Gulf of Mexico. Key stratigraphic records also provide independent evidence for these exhumation episodes. In our view, both Mesozoic rapid exhumation events were controlled by the activity of the Caltepec Fault Zone and the Oaxaca Fault. Our data suggest that both these large fault systems have remained active since, at least, the Late Triassic.  相似文献   
987.
Water losses from snow intercepted by forest canopy can significantly influence the hydrological cycle in seasonally snow‐covered regions, yet how snow interception losses (SIL) are influenced by a changing climate are poorly understood. In this study, we used a unique 30 year record (1986–2015) of snow accumulation and snow water equivalent measurements in a mature mixed coniferous (Picea abies and Pinus sylvestris ) forest stand and an adjacent open area to assess how changes in weather conditions influence SIL. Given little change in canopy cover during this study, the 20% increase in SIL was likely the result of changes in winter weather conditions. However, there was no significant change in average wintertime precipitation and temperature during the study period. Instead, mean monthly temperature values increased during the early winter months (i.e., November and December), whereas there was a significant decrease in precipitation in March. We also assessed how daily variation in meteorological variables influenced SIL and found that about 50% of the variation in SIL was correlated to the amount of precipitation that occurred when temperatures were lower than ?3 °C and to the proportion of days with mean daily temperatures higher than +0.4 °C. Taken together, this study highlights the importance of understanding the appropriate time scale and thresholds in which weather conditions influence SIL in order to better predict how projected climate change will influence snow accumulation and hydrology in boreal forests in the future.  相似文献   
988.
Ground subsidence in the southeastern border of the Granada Basin (SE Spain) has been studied using remote sensing techniques. Over the last decades, the region has experienced a huge urban expansion, which has caused a substantial increase in water supply requirements. Water needs are exclusively met by groundwater by means of numerous pumping wells, which exploit a confined detrital aquifer of alluvial fan deposits with a heterogeneous facies distribution. A general piezometric level decline (up to 50 m) has been recorded in the aquifer during the past 30 years that has induced the generation of a subsiding area with oval shape oriented WNW‐ESE just where the new urban areas and pumping wells are located. Subsidence has been monitored by exploiting synthetic aperture radar (SAR) images from ENVISAT (2003–2009) and Cosmo‐SkyMed (2011–2014). A new approach, which combines A‐DInSAR and small‐area persistent scatterer interferometry (PSI) analysis, has been applied obtaining a good accuracy regarding temporal and spatial dimension of the subsidence. ENVISAT data (2003–2009) reveal subsidence rates up to 10–15 mm/year, and Cosmo‐SkyMed (2011–2014) values slightly lower; up to 10 mm/year. Temporal variations in the subsidence velocity are in accordance with the rainfall pattern and piezometric fluctuations in the aquifer. The sector with highest rates of subsidence does not correspond to the area with more intense groundwater exploitation but to the area with greater presence of clays in the confining layer of the aquifer. There is a clear lithological control in the spatial distribution of the ground subsidence. This work integrates detailed geological and hydrogeological data with differential SAR interferometry monitoring with the aim to better understand subsidence processes in detrital aquifers with small‐scale heterogeneity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
989.
According to field feedbacks from high‐speed lines (HSL), the increase of train operating speeds is responsible for unusual fast evolving geometrical disorders in ballasted tracks. This paper deals with the search of solutions applicable at the design stage to mitigate these disorders. The starting point of the present work relies on the assumption, comforted by the literature, of a strong correlation between disorders and vertical accelerations in the ballast layer induced by the train passages. This led us focus herein on the calculation and the analysis of accelerations in the railway structure. The vertical accelerations (γz) are computed using the in‐house developed numerical program ViscoRail and on the basis of a reference HSL. These are shown to increase strongly with the train speed attesting to the link between the train speed and the geometrical disorders in ballast. Then, other simulations are run varying some structural parameters to evaluate their impact on the acceleration field γz. In that way, we show that decreasing the stiffness of the mechanical connection between the rails and the ballast, increasing the moment of inertia of the rails or the Young modulus of the sub‐ballast layer, leads to a decrease of γz and could provide solutions for the design of future HSL. The solution consisting in the incorporation of an asphalt sub‐ballast layer, as already experimented on sites, is finally examined in more details. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
990.
Methane hydrate‐bearing sediments exist throughout the world in continental margins and in Arctic permafrost. Hydrates are ice‐like compounds when dissociate due to temperature rise or reduction in fluid pressure, release gas. Because of the mechanical property changes caused by dissociation in which the loads supported by the hydrates are transferred to soil grains, these sediments may become unstable. To quantify the risk of ground instability triggered by dissociation, which may happen during operation to extract methane gas or from climate changes, a reliable predictive model is indispensable. Even though many models have been proposed, a detailed validation of the ability to model dissociation impact is still needed. This study investigated the adequacy of an spatially mobilized plane constitutive model and a modeling framework using laboratory‐induced dissociation tests under shear from literature. Using laboratory‐imposed temperature and pressure changes and the resulting hydrate saturation changes as input, this study was able to capture the geomechanical responses and determine the stability state of methane hydrate‐bearing sediments as observed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号