首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   16篇
  国内免费   5篇
测绘学   8篇
大气科学   2篇
地球物理   35篇
地质学   45篇
海洋学   9篇
天文学   5篇
综合类   2篇
自然地理   3篇
  2023年   1篇
  2022年   9篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   16篇
  2017年   13篇
  2016年   11篇
  2015年   8篇
  2014年   6篇
  2013年   13篇
  2012年   4篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  1999年   1篇
排序方式: 共有109条查询结果,搜索用时 31 毫秒
41.
Early in the 1930s,two relatively large earthquakes (Kosout,magnitude 6.8,and Talarrud,magnitude 5.8) shook the eastern Mazandaran,northern Iran.Despite the his...  相似文献   
42.
43.
This paper presents a method for identification of the hydrodynamic coefficients of the dive plane of an autonomous underwater vehicle. The proposed identification method uses the governing equations of motion to estimate the coefficients of the linear damping, added mass and inertia, cross flow drag and control. Parts of data required by the proposed identification method are not measured by the onboard instruments. Hence, an optimal fusion algorithm is devised which estimates the required data accurately with a high sampling rate. To excite the dive plane dynamics and obtain the required measurements, diving maneuvers should be performed. Hence, a reliable controller with satisfactory performance and stability is needed. A cascaded controller is designed based on the coefficients obtained using a semi-empirical method and its robustness to the uncertainties is verified by the μ-analysis method. The performance and accuracy of the identification and fusion algorithms are investigated through 6-DOF numerical simulations of a realistic autonomous underwater vehicle.  相似文献   
44.
We compare two methods for estimating the natural source zone depletion (NSZD) rate at fuel release sites that occurs by groundwater flow through the source zone due to dissolution and transport of biodegradation products. Dissolution is addressed identically in both methods. The “mass budget method”, previously proposed and applied by others, estimates the petroleum hydrocarbon biodegradation rate based on dissolved electron acceptor delivery and dissolved biodegradation product removal by groundwater flow. The mass budget method relies on assumed stoichiometry for the degradation reactions and differences in concentrations of dissolved species (oxygen, nitrate, sulfate, reduced iron, reduced manganese, nonvolatile dissolved organic carbon, methane) at monitoring locations upgradient and downgradient of the source zone. We illustrate a refinement to account for degradation reactions associated with loss of reduced iron from solution. The “carbon budget method,” a simplification of approaches applied by others, addresses carbon‐containing species in solution or lost from solution (precipitated) and does not require assumptions about stoichiometry or information about electron acceptors. We apply both methods to a fuel release site with unusually detailed monitoring data and discuss applicability to more typical and less thoroughly monitored sites. The methods, as would typically be applied, yield similar results but have different constraints and uncertainties. Overall, we conclude that the carbon budget method has greater practical utility as it is simpler, requires fewer assumptions, accounts for most iron‐reducing reactions, and does not include CO2 that escapes from the saturated to the unsaturated zone.  相似文献   
45.
The matrix–fracture transfer shape factor is one of the important parameters in the modeling of fluid flow in fractured porous media using a dual-porosity concept. Warren and Root [36] introduced the dual-porosity concept and suggested a relation for the shape factor. There is no general relationship for determining the shape factor for a single-phase flow of slightly compressible fluids. Therefore, different studies reported different values for this parameter, as an input into the flow models. Several investigations have been reported on the shape factor for slightly compressible fluids. However, the case of compressible fluids has not been investigated in the past. The focus of this study is, therefore, to find the shape factor for the single-phase flow of compressible fluids (gases) in fractured porous media. In this study, a model for the determination of the shape factor for compressible fluids is presented; and, the solution of nonlinear gas diffusivity equation is used to derive the shape factor. The integral method and the method of moments are used to solve the nonlinear governing equation by considering the pressure dependency of the viscosity and isothermal compressibility of the fluid. The approximate semi-analytical model for the shape factor presented in this study is verified using single-porosity, fine-grid, numerical simulations. The dependency of the shape factor on the gas specific gravity, pressure and temperature are also investigated. The theoretical analysis presented improves our understanding of fluid flow in fractured porous media. In addition, the developed matrix–fracture transfer shape factor can be used as an input for modeling flow of compressible fluids in dual-porosity systems, such as naturally fractured gas reservoirs, coalbed methane reservoirs and fractured tight gas reservoirs.  相似文献   
46.
We determine the source parameters for 2003 (Mw 6.5) Bam, Iran, earthquake using an empirical Green’s function summation approach to model ground motions recorded by two strong motion stations at approximately 45 km epicentral distance. We introduce a genetic algorithm technique to optimize the fit to observed elastic response spectra. The proposed genetic algorithm technique allows us to explore the sensitivity of the results to multiple source parameters, including hypocenter location, focal mechanism (Strike and Dip), P-wave velocity in depth, fault dimension and rupture and healing velocities.  相似文献   
47.
Changes over the twentieth century in seasonal mean potential predictability (PP) of global precipitation, 200 hPa height and land surface temperature are examined by using 100-member ensemble. The ensemble simulations have been conducted by using an intermediate complexity atmospheric general circulation model of the International Center for Theoretical Physics, Italy. Using the Hadley Centre sea surface temperature (SST) dataset on a 1° grid, two 31 year periods of 1920–1950 and 1970–2000 are separated to distinguish the periods of low and high SST variability, respectively. The standard deviation values averaged for the (“Niño-3.4”; 5°S–5°N, 170°W–120°W) region are 0.71 and 1.15 °C, for the periods of low and high SST variability, respectively, with a percentage change of 62 % during December–January–February (DJF). The leading eigenvector and the associated principal component time series, also indicate that the amplitude of SST variations have positive trend since 1920s to recent years, particularly over the El Niño Southern Oscillation (ENSO) region. Our hypothesis states that the increase in SST variability has increased the PP for precipitation, 200 hPa height and land surface temperature during the DJF. The analysis of signal and noise shows that the signal-to-noise (S/N) ratio is much increased over most of the globe, particularly over the tropics and subtropics for DJF precipitation. This occurs because of a larger increase in the signal and at the same time a reduction in the noise, over most of the tropical areas. For 200 hPa height, the S/N ratio over the Pacific North American (PNA) region is increasing more than that for the other extratropical regions, because of a larger percentage increase in the signal and only a small increase in noise. It is also found that the increase in seasonal mean transient signal over the PNA region is 50 %, while increase in the noise is only 12 %, during the high SST variability period, which indicates that the increase in signal is more than the noise. For DJF land surface temperature, the perfect model notion is utilized to confirm the changes in PP during the low and high SST variability periods. The correlation between the perfect model and the other members clearly reveal that the seasonal mean PP changed. In particular, the PP for the 31 years period of 1970–2000 is higher than that for the 31 years period of 1920–1950. The land surface temperature PP is increased in northern and southern Africa, central Europe, southern South America, eastern United States and over Canada. The increase of the signal and hence the seasonal mean PP is coincides with an increase in tropical Pacific SST variability, particularly in the ENSO region.  相似文献   
48.
Karstic rocks (soluble rocks) exist in different areas of the world having useful/harmful structural and environmental impacts. One of the useful aspect is availability of rich water resources in some regions. An important defect of this kind of rocks is their low strength against water flows. These rocks usually dissolve in acidic water and as a result abundant caverns are created inside them. The gypsum and salt present in these rocks dissolve even in non-acidic water. Presence of these rocks in different foundations and reservoirs especially in dams could be potentially dangerous and cause enormous problems. If dams are located above soluble rocks like limestone, dolomite or gypsum they are endangered by karstification. Karstification is a dynamic process resulting in voids within the rocks due to dissolution. This dissolution leads to the formation of a pipe system within the sub-surface In the physical modeling, effects of cut-off wall height within gypsum layer were examined and monitored. Then with GeoStudio and Flac software, results of physical modeling are analyzed. In each experiment, cut-off wall height was changed. The result of the experiments indicated that as the gypsum Karst is very weak against water, cut-off wall must continue completely within the gypsum layer, as a complete positive cut-off wall.  相似文献   
49.
Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs (m 1), and tracer cumulative mass discharge (M d) through control planes combined with hydraulic head observations (h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling.  相似文献   
50.
The cadence and resolution of solar images have been increasing dramatically with the launch of new spacecraft such as STEREO and SDO. This increase in data volume provides new opportunities for solar researchers, but the efficient processing and analysis of these data create new challenges. We introduce a fuzzy-based solar feature-detection system in this article. The proposed system processes SDO/AIA images using fuzzy rules to detect coronal holes and active regions. This system is fast and it can handle different size images. It is tested on six months of solar data (1 October 2010 to 31 March 2011) to generate filling factors (ratio of area of solar feature to area of rest of the solar disc) for active regions and coronal holes. These filling factors are then compared to SDO/EVE/ESP irradiance measurements. The correlation between active-region filling factors and irradiance measurements is found to be very high, which has encouraged us to design a time-series prediction system using Radial Basis Function Networks to predict ESP irradiance measurements from our generated filling factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号