首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   4篇
  国内免费   1篇
测绘学   10篇
大气科学   9篇
地球物理   40篇
地质学   91篇
海洋学   15篇
天文学   29篇
综合类   1篇
自然地理   14篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   6篇
  2018年   11篇
  2017年   10篇
  2016年   11篇
  2015年   3篇
  2014年   11篇
  2013年   6篇
  2012年   8篇
  2011年   7篇
  2010年   7篇
  2009年   12篇
  2008年   12篇
  2007年   8篇
  2006年   11篇
  2005年   7篇
  2004年   9篇
  2003年   6篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1970年   2篇
  1965年   1篇
  1962年   1篇
  1914年   2篇
  1912年   1篇
  1911年   1篇
排序方式: 共有209条查询结果,搜索用时 46 毫秒
151.
During periods of sunspot maxima (approximately every 11 years) the mean winter position of the center of the Aleutian Low pressure system shifts from the Gulf of Alaska to the western Aleutian Islands, and mean, cyclonic, wind-stress transport in the Gulf of Alaska is reduced by roughly 20%. Coastal sea level data in the gulf do not reflect an 11-year cycle but spectral energy densities indicate an approximate 6-year periodicity also present in transpacific annual mean sea surface temperatures that, in the last one or two decades, parallels large year classes of Pacific herring in southeastern Alaska, large escapements of sockeye salmon fry in the Bristol Bay area, and maxima in the January catch of Dungeness crab in Alaska.  相似文献   
152.
Lakes can be used as model basins to investigate subaqueous slope stability under static and dynamic loading conditions. This study combines geophysical, sedimentological and in situ geotechnical methods with limit equilibrium calculations in order to discuss (i) the geological and sedimentological processes acting on submerged non-deltaic lateral slopes in perialpine, fjord-type Lake Lucerne (Central Switzerland); (ii) their control on physical and geotechnical properties that eventually affect the subaqueous stability conditions and slope failure initiation, and (iii) the quantitative assessment of subaqueous slope stability. Three detailed case studies are presented to describe and quantitatively reconstruct stability conditions of slopes that failed during a well-documented historic earthquake in 1601 A.D. and during a prehistoric Late Holocene earthquake around 2220 cal yr BP (both Mw > 6).

Glacio-lacustrine sedimentation dominated by suspension settling from meltwater plumes and slight overconsolidation from ice-grounding during small readvances of a generally retreating glacier lead to a peculiar glacial-to-postglacial lithologic slope succession that eventually was buried by the Holocene sediment drape. During past earthquake shaking, the slopes that were stable under static loading conditions (factor of safety of 1.5–2) failed along planar sliding surfaces that developed at the lithological boundary between fine-grained, thinly-laminated, slightly underconsolidated cyclic plume deposits with low undrained shear strength values above and overconsolidated, glacially-deformed, glacio-lacustrine deposits with excessive formation pore pressure below. Measured in situ shear strength characteristics and sediment geometries were implemented into limit equilibrium models that allow for quantitative reconstruction of critical ground accelerations of past earthquakes in Central Switzerland. Results reveal seismic peak ground acceleration (PGA) of  0.08 g and  0.14 g for the historic 1601 A.D. Mw  6.2 earthquake and the prehistoric,  2220 cal yr B.P. earthquake, respectively. Additionally, results reveal that stability conditions change over relative short geological time scales because the postglacial sedimentation rate, which mainly controls the static weight of the slope sediment acting on the critical lithological boundary, turns out to be a key parameter in “charging” slopes susceptible to sliding.  相似文献   

153.
The city of Tulum, in the state of Quintana Roo (Mexico) depends almost exclusively on groundwater for water supply. The groundwater is exploited from a coastal aquifer which contains a karst network that is considered as one of the largest ones on earth. Given the nature of karst aquifers, the whole area is very sensitive to contaminants and bacteria transport, because flow paths, residence time and degradation rates differ significantly from what can be observed in the porous aquifer. The present study focuses on isotopes (18O and 2H), dissolved ions’ concentration and Escherichia coli (E. coli). The result of our survey points out the anthropic impact on groundwater quality. Furthermore, the chloride concentrations illustrate the influence of seawater mixing and geological heterogeneity over the study area. Due to an exponential growth of the tourism industry, the needs in terms of water supply and water treatment increase significantly. Tulum is a coastal city, facing a coral reef and is bordered by the Sian Ka’an biosphere reserve, therefore, an environmental issue is added to the sanitary issue, both being the basis of the local economic development. Our results show that E. coli remains a major issue, as several samples tested were contaminated, in particular those in the city center. Ions’ survey shows an anthropic impact through nitrate, phosphate and fluoride concentrations, but the obtained values are not alarming. Considering the saline intrusion, chloride concentrations indicate that the area below the Tulum city center seems to be less permeable (and maybe less karstified) than the surrounding areas, as groundwater is less subject to seawater mixing than other sampling sites at similar distance to the coast.  相似文献   
154.
Two typical mineral textures of the MG 1 chromitite of the Bushveld Complex, South Africa, were observed; one characterised by abundant orthopyroxene oikocrysts, and the other by coarse-grained granular chromitite with only minor amounts of interstitial material. Oikocrysts form elongate clusters of several crystals aligned parallel to the layering, and typically have subhedral, almost chromite-free, core zones containing remnants of olivine. The core zones are surrounded by poikilitic aureoles overgrowing euhedral to subhedral chromite chadacrysts. Chromite grains show no preferred crystal orientation, whereas orthopyroxene grains forming clusters commonly share the same crystallographic orientation. Oikocryst core zones have lower Mg# and higher concentrations of incompatible trace elements compared to their poikilitic aureoles. Core zones are relatively enriched in REE compared to a postulated parental magma (B1) and did not crystallise in equilibrium with the surrounding minerals, whereas the composition of the poikilitic orthopyroxene is consistent with growth from the B1 magma. These observations cannot be explained by the classic cumulus and post-cumulus models of oikocryst formation. Instead, we suggest that the oikocryst core zones in the MG1 chromitite layer formed by peritectic replacement of olivine primocrysts by reaction with an upwards-percolating melt enriched in incompatible trace elements. Poikilitic overgrowth on oikocryst core zones occurred in equilibrium with a basaltic melt of B1 composition near the magma-crystal mush interface. Finally, adcumulus crystallisation followed by grain growth resulted in the surrounding granular chromitite.  相似文献   
155.
Droughts and floods are two opposite but related hydrological events. They both lie at the extremes of rainfall intensity when the period of that intensity is measured over long intervals. This paper presents a new concept based on stochastic calculus to assess the risk of both droughts and floods. An extended definition of rainfall intensity is applied to point rainfall to simultaneously deal with high intensity storms and dry spells. The mean-reverting Ornstein–Uhlenbeck process, which is a stochastic differential equation model, simulates the behavior of point rainfall evolving not over time, but instead with cumulative rainfall depth. Coefficients of the polynomial functions that approximate the model parameters are identified from observed raingauge data using the least squares method. The probability that neither drought nor flood occurs until the cumulative rainfall depth reaches a given value requires solving a Dirichlet problem for the backward Kolmogorov equation associated with the stochastic differential equation. A numerical model is developed to compute that probability, using the finite element method with an effective upwind discretization scheme. Applicability of the model is demonstrated at three raingauge sites located in Ghana, where rainfed subsistence farming is the dominant practice in a variety of tropical climates.  相似文献   
156.
Geomagnetic pulsations in the frequency range of Pc1 pearl waves with the dynamic spectra having a very narrow spectrum width at the beginning of the event and a very broad spectrum width (Δf/f0 ∼ 1) in the later part of the event are analyzed. One of the observed events shown by the dynamic spectrum resembles a goose with the beak at the beginning of the event and with the wing in the later part of the event. Various interpretations of these geomagnetic pulsations are presented taking into account nonlinear effects, quasilinear interaction of electromagnetic ion-cyclotron waves with energetic, anisotropic protons and modulation of plasma parameters in the magnetosphere by Pc3–5 hydromagnetic waves. The ionospheric effect in the signal formation is determined by the ionospheric Alfvén resonator. It can control the frequency range of the dynamic spectra, but not the internal structure of the signal.  相似文献   
157.
During the multiband wave Pc1 event on March 7, 2001 the EISCAT UHF and VHF incoherent scatter radars operated simultaneously covering an exceptionally wide altitude range of the ionosphere ~90—2000 km. This made possible to test the ionospheric Alfvén resonator (IAR) model over a large altitude range. The three lowest IAR eigenfrequencies, where the most of the Pc1 pulsation signal bands occur, were selected for the spatial analysis of the standing wave electromagnetic fields, applying the full-wave numerical simulation method. The altitude spread of amplitude maxima and nodes together with polarization characteristics of oscillation maxima in the horizontal plane are presented. The comparison of the standing wave oscillations on the altitude profile with the signal amplitude observed on the ground is also presented.  相似文献   
158.
The orientation of several landforms, e.g. drumlins, flutes, crag-and-tails, and mega-scale glacial lineations, records the direction of the overlying ice flow that created them. Populations of such features are used routinely to infer former ice-flow patterns, which serve as the building blocks of reconstructions of palaeo ice-sheet evolution. Currently, the conceptualisation of flow patterns from these flow-direction records is done manually and qualitatively, so the extractable glaciological information is limited. We describe a kriging method (with Matlab code implementation) that calculates continuous fields of ice-flow direction, convergence, and curvature from the flow-direction records, and which yields quantitative results with uncertainty estimates. We test the method by application to the subglacial bedforms of the Tweed Valley Basin, UK. The results quantify the convergent flow pattern of the Tweed Palaeo-Ice Stream in detail and pinpoint its former lateral shear margins and where ice flowed around basal bumps. Ice-flow parameters retrieved by this method can enrich ice-sheet reconstructions and investigations of subglacial till processes and bedform genesis. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
159.
Least-squares reverse-time migration is well known for its capability to generate artefact-free true-amplitude subsurface images through fitting observed data in the least-squares sense. However, when applied to realistic imaging problems, this approach is faced with issues related to overfitting and excessive computational costs induced by many wave-equation solves. The fact that the source function is unknown complicates this situation even further. Motivated by recent results in stochastic optimization and transform-domain sparsity promotion, we demonstrate that the computational costs of inversion can be reduced significantly while avoiding imaging artefacts and restoring amplitudes. While powerful, these new approaches do require accurate information on the source-time function, which is often lacking. Without this information, the imaging quality deteriorates rapidly. We address this issue by presenting an approach where the source-time function is estimated on the fly through a technique known as variable projection. Aside from introducing negligible computational overhead, the proposed method is shown to perform well on imaging problems with noisy data and problems that involve complex settings such as salt. In either case, the presented method produces high-resolution high-amplitude fidelity images including an estimate for the source-time function. In addition, due to its use of stochastic optimization, we arrive at these images at roughly one to two times the cost of conventional reverse-time migration involving all data.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号