首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   8篇
  国内免费   2篇
大气科学   15篇
地球物理   23篇
地质学   63篇
海洋学   16篇
天文学   36篇
综合类   2篇
自然地理   8篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   7篇
  2015年   9篇
  2014年   8篇
  2013年   8篇
  2012年   7篇
  2011年   10篇
  2010年   5篇
  2009年   6篇
  2008年   10篇
  2007年   5篇
  2006年   7篇
  2005年   8篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1990年   1篇
  1987年   2篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   2篇
  1971年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
161.
162.
A fretted valley system on Mars located at the northern mid-latitude dichotomy boundary contains lineated valley fill (LVF) with extensive flow-like features interpreted to be glacial in origin. We have modeled this deposit using glacial flow models linked to atmospheric general circulation models (GCM) for conditions consistent with the deposition of snow and ice in amounts sufficient to explain the interpreted glaciation. In the first glacial flow model simulation, sources were modeled in the alcoves only and were found to be consistent with the alpine valley glaciation interpretation for various environments of flow in the system. These results supported the interpretation of the observed LVF deposits as resulting from initial ice accumulation in the alcoves, accompanied by debris cover that led to advancing alpine glacial landsystems to the extent observed today, with preservation of their flow texture and the underlying ice during downwasting in the waning stages of glaciation. In the second glacial flow model simulation, the regional accumulation patterns predicted by a GCM linked to simulation of a glacial period were used. This glacial flow model simulation produced a much wider region of thick ice accumulation, and significant glaciation on the plateaus and in the regional plains surrounding the dichotomy boundary. Deglaciation produced decreasing ice thicknesses, with flow centered on the fretted valleys. As plateaus lost ice, scarps and cliffs of the valley and dichotomy boundary walls were exposed, providing considerable potential for the production of a rock debris cover that could preserve the underlying ice and the surface flow patterns seen today. In this model, the lineated valley fill and lobate debris aprons were the product of final retreat and downwasting of a much larger, regional glacial landsystem, rather than representing the maximum extent of an alpine valley glacial landsystem. These results favor the interpretation that periods of mid-latitude glaciation were characterized by extensive plateau and plains ice cover, rather than being restricted to alcoves and adjacent valleys, and that the observed lineated valley fill and lobate debris aprons represent debris-covered residual remnants of a once more extensive glaciation.  相似文献   
163.
The genetic relationship between different types of granite is critical for understanding the formation and evolution of granitic magma. Fluid-rock interaction experiments between two-mica leucogranite and boron-rich fluids were carried out at 600–700°C and 200 MPa to investigate the effects of boron content in fluid and temperature on the reaction products. Our experimental results show that tourmaline granite can be produced by reactions between boron-rich fluid and two-mica granite.At 700°C, the addition of boron-rich fluid resulted in partial melting of two-mica granite and crystallization of tourmaline from the boron-rich partial melt. Increasing boron concentration in fluid promotes the melting of two-mica granite and the growth of tourmaline. No melt was produced in experiments at 600°C, in which Fe, Mg and Al released from biotite decomposition combined with boron from the fluid to form tourmaline under subsolidus conditions. The Na required for tourmaline crystallization derived from Na/K exchange between feldspar and the K released by biotite decomposition. The produced tourmaline generally has core-rim structures, indicating that the composition of melt or fluid evolved during tourmaline crystallization.Based on the experimental results, we propose that tourmaline granite veins or dikes can be formed by the reactions between boron-rich fluids, presumably produced by devolatilization of boron-bearing granitic magma, and incompletely crystallized granite at the top of the magma chamber. This "self-metasomatism" involving boron-rich fluid in the late stage of magma crystallization could be an important mechanism for the formation of tourmaline granite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号