首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   3篇
测绘学   1篇
大气科学   7篇
地球物理   17篇
地质学   38篇
海洋学   22篇
天文学   59篇
综合类   1篇
自然地理   11篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   3篇
  2013年   13篇
  2012年   6篇
  2011年   4篇
  2010年   4篇
  2009年   15篇
  2008年   8篇
  2007年   10篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1981年   1篇
  1974年   1篇
  1966年   1篇
排序方式: 共有156条查询结果,搜索用时 359 毫秒
121.
In this paper we present data gathered during a weak case of the Helm wind, an example of supercritical airflow, in the vicinity of Cross Fell in Northern England. Airborne measurements have been made using an instrumented glider with simultaneous ground-based measurements both on a hill summit and on the valley floor downwind of the hill.It is found that the major features of the airflow both near the surface and aloft, including the lee-wave activity are well reproduced by the airflow model of Carruthers and Choularton (1982). Secondary features including several higher modes of lee-waves and changes in the valley flow associated with nocturnal cooling were observed which could not be accounted for by the simple model.  相似文献   
122.
By use of the generalized least-squares procedure, in conjunction with a finite element approximation in time, a simple three-time-level family of time integration schemes is derived. This results in fourth-order accurate unconditionally stable algorithms and stable eighth-order accurate non-dissipative algorithms. Numerical examples show the accuracy of the proposed schemes in comparison with the Fox-Goodwin formula and Newmark's average acceleration method.  相似文献   
123.
124.
A 10-months long monitoring experiment to investigate the diurnal and seasonal variation of aerosol size distribution at Nagarkot (1,900 m asl) in the Kathmadu Valley was carried out as part of a study on katabatic and anabatic influence on pollution dispersion mechanisms. Seasonal means show total aerosol number concentration was highest during post-monsoon season (775 ± 417 cm?3) followed by pre-monsoon (644 ± 429 cm?3) and monsoon (293 ± 205 cm?3) periods. Fine particle concentration (0.25 μm ≤ DP ≤ 2.5 μm) dominated in all seasons, however, contribution by coarse particles (3.0 μm ≤ DP ≤ 10.0 μm) is more significant in the monsoon season with contributions from particles larger than 10.0 μm being negligible. Our results show a regular diurnal pattern of aerosol concentration in the valley with a morning and an evening peak. The daily twin peaks are attributed to calm conditions followed by transitional growth and break down of the valley boundary layer below. The peaks are generally associated with enhancement of the coarse particle fraction. The evening peak is generally higher than the morning peak, and is caused by fresh evening pollution from the valley associated with increased local activities coupled with recirculation of these trapped pollutants. Relatively clean air masses from neighbouring valleys contribute to the smaller morning peak. Gap flows through the western passes of the Kathmandu Valley, which sweep away the valley pollutants towards the eastern passes modulated by the mountain - valley wind system, are mainly responsible for the dominant pollutant circulation patterns exhibited within the valley.  相似文献   
125.
The Northeast Atlantic possesses some of the highest wave energy levels in the world. The recent years have witnessed a renewed interest in harnessing this vast energy potential. Due to the complicated geomorphology of the Irish coast, there can be a significant variation in both the wave and wind climate. Long-term hindcasts with high spatial resolution, properly calibrated against available measurements, provide vital information for future deployments of ocean renewable energy installations. These can aid in the selection of adequate locations for potential deployment and for the planning and design of those marine operations. A 34-year (from 1979 to 2012), high-resolution wave hindcast was performed for Ireland including both the Atlantic and Irish Sea coasts, with a particular focus on the wave energy resource. The wave climate was estimated using the third-generation spectral wave model WAVEWATCH III®; version 4.11, the unstructured grid formulation. The wave model was forced with directional wave spectral data and 10-m winds from the European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim reanalysis, which is available from 1979 to the present. The model was validated against available observed satellite altimeter and buoy data, particularly in the nearshore, and was found to be excellent. A strong spatial and seasonal variability was found for both significant wave heights, and the wave energy flux, particularly on the north and west coasts. A strong correlation between the North Atlantic Oscillation (NAO) teleconnection pattern and wave heights, wave periods, and peak direction in winter and also, to a lesser extent, in spring was identified.  相似文献   
126.
The Burren region in western Ireland contains an almost continuous record of Viséan (Middle Mississippian) carbonate deposition extending from Chadian to Brigantian times, represented by three formations: the Chadian to Holkerian Tubber Formation, the Asbian Burren Formation and the Brigantian Slievenaglasha Formation. The upper Viséan (Holkerian–Brigantian) platform carbonate succession of the Burren can be subdivided into six distinct depositional units outlined below. (1) An Holkerian to lower Asbian unit of skeletal peloidal and bryozoan bedded limestone. (2) Lower Asbian unit of massive light grey Koninckopora‐rich limestone, representing a shallower marine facies. (3) Upper Asbian terraced limestone unit with minor shallowing‐upward cycles of poorly bedded Kamaenella‐rich limestone with shell bands and palaeokarst features. This unit is very similar to other cyclic sequences of late Asbian age in southern Ireland and western Europe, suggesting a glacio‐eustatic origin for this fourth‐order cyclicity. (4) Lower Brigantian unit with cyclic alternations of crinoidal/bryozoan limestone and peloidal limestone with coral thickets. These cycles lack evidence of subaerial exposure. (5) Lower Brigantian bedded cherty dark grey limestone unit, deposited during the maximum transgressive phase of the Brigantian. (6) Lower to upper Brigantian unit mostly comprising cyclic bryozoan/crinoidal cherty limestone. In most areas this youngest unit is truncated and unconformably overlain by Serpukhovian siliciclastic rocks. Deepening enhanced by platform‐wide subsidence strongly influenced later Brigantian cycle development in Ireland, but localized rapid shallowing led to emergence at the end of the Brigantian. A Cf5 Zone (Holkerian) assemblage of microfossils is recorded from the Tubber Formation at Black Head, but in the Ballard Bridge section the top of the formation has Cf6 Zone (Asbian) foraminiferans. A typical upper Asbian Rugose Coral Assemblage G near the top of the Burren Formation is replaced by a lower Brigantian Rugose Coral Assemblage H in the Slievenaglasha Formation. A similar change in the foraminiferans and calcareous algae at this Asbian–Brigantian formation boundary is recognized by the presence of upper Asbian Cf6γ Subzone taxa in the Burren Formation including Cribrostomum lecomptei, Koskinobigenerina sp., Bradyina rotula and Howchinia bradyana, and in the Slievenaglasha Formation abundant Asteroarchaediscus spp., Neoarchaediscus spp. and Fasciella crustosa of the Brigantian Cf6δ Subzone. The uppermost beds of the Slievenaglasha Formation contain a rare and unusual foraminiferal assemblage containing evolved archaediscids close to tenuis stage indicating a late Brigantian age. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
127.
The California Department of Toxic Substances Control (DTSC) gathered empirical data from sites contaminated with chlorinated volatile organic compounds and generated a vapor intrusion database. The database includes 52 sites across California with 213 buildings, of which, 53% are residential, and 47% are commercial/industrial (nonresidential). DTSC's objective is to improve its knowledge and understanding of vapor intrusion and derive empirical attenuation factors that are representative of the climatic conditions and types of buildings commonly found in the state. Filtering was applied to remove data of suspect quality that were potentially affected by background sources. After filtering to 600 pairs from 32 sites across California, a subslab attenuation factor (AF) was calculated yielding a 95th percentile of 0.005. After filtering to 2926 paired measurements from 39 sites across California, a soil vapor AF was calculated yielding a 95th percentile of 0.0009. The groundwater data was not analyzed due to the small size of the dataset. The AFs from this study are similar to AFs in a California-specific study by Lahvis and Ettinger (2021). Accordingly, converging lines of evidence suggest that vapor attenuation in California is different from what is observed nationwide by the United States Environmental Protection Agency (USEPA), where an AF of 0.03 was empirically derived and later recommended for initial screening of buildings for potential vapor intrusion exposure (USEPA, 2015).  相似文献   
128.
This paper investigates the influences of palaeohydrology and geological‐topographic inheritance in shaping the channel of the lower River Suir, southeast Ireland. Results of acoustic surveys of the lower River Suir and Waterford Harbour reveal two scales of pseudo‐cyclic river bedforms. Longitudinal elevation profiles of the geological topography (undulating bedrock and till‐mantled bedrock) bounding the present floodplain swath reveal pseudo‐cyclicity in that terrain too. Spectral and statistical analyses are used to quantify the cyclicity of the long profile and geological‐topographic series. These methods show that the dominant cyclicity of the long profile reflects autocorrelation more than inheritance of cyclicity from the bounding geological topography. The cyclicity of the long profile mainly reflects a hydraulic control on pool‐spacing, although some cyclicity probably has been inherited from the geological‐topography. Channel‐forming palaeodischarge is estimated based on the dominant pool‐spacing revealed by spectral analysis, validated using relationships between meander wavelength, channel cross‐sectional geometry and hydraulically‐informed discharge reconstruction. The palaeodischarge estimates are in close agreement and are two orders of magnitude greater than present flood maxima. Significantly, these palaeodischarge estimates also agree closely with palaeodischarge calculated for the submerged Pleistocene palaeochannel that extends across the near‐shore continental shelf from Waterford Harbour. The pool‐sequence of the lower Suir and the submerged palaeochannel represent a former land‐system that was active during a period of low relative sea level during the last glacial. More broadly, the paper offers insights into the landscape evolution of formerly glaciated regions that experienced very wide discharge variability during and after the transition from glacial to interglacial regimes, in a context of complex relative sea level change. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
129.
Estimating the amount of erosion experienced by a sedimentary basin during its geological history plays a key role in basin modelling. In this paper, we present a novel probabilistic approach to estimate net erosion from porosity–depth data from a single well. Our approach uses a Markov chain Monte Carlo algorithm which readily allows us to deal with imprecise knowledge of the lithology-dependent compaction parameters in a joint inversion scheme using multiple lithologies. The results using synthetic data highlight the advantages of our approach over conventional techniques for net erosion estimation: (a) uncertainties on compaction parameters can be effectively mapped into a probabilistic solution for net erosion; (b) posterior uncertainties are easy to quantify; (c) the joint inversion scheme can automatically reconcile porosity data from different lithologies. Our results also underscore the critical role of prior assumptions on controlling the retrieved estimates for net erosion. Using real data from a well in the Barents Sea, we simulate three possible scenarios of variable prior assumptions on compaction parameters to demonstrate the general applicability of our approach. Strong prior assumptions on the compaction parameters led to unrealistic estimates of net erosion for the target well, indicating the assumptions are probably inappropriate. Our preferred strategy for this dataset is to include additional data to constrain the normal compaction trend of the sediments. This provides a net erosion estimate for the target well of about 2300 m with a standard deviation of 140 m which is in line with previous studies. Finally, we discuss potential guidelines to deal with real applications in which data from normally compacted sediments are not available. One is to use our algorithm as a hypothesis-testing tool to evaluate the results under a large set of assumed compaction parameters. A second is to infer compaction parameters and net erosion simultaneously from the target well porosity data. Although appealing and successful with synthetic data, this strategy provides results which are strongly dependent on the calibration data and the geological history of the sediments sampled by the target well.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号