首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   15篇
  国内免费   2篇
测绘学   7篇
大气科学   17篇
地球物理   72篇
地质学   152篇
海洋学   34篇
天文学   26篇
自然地理   47篇
  2021年   9篇
  2020年   11篇
  2019年   8篇
  2018年   12篇
  2017年   17篇
  2016年   9篇
  2015年   7篇
  2014年   11篇
  2013年   17篇
  2012年   17篇
  2011年   19篇
  2010年   15篇
  2009年   12篇
  2008年   12篇
  2007年   17篇
  2006年   12篇
  2005年   7篇
  2004年   14篇
  2003年   6篇
  2002年   7篇
  2001年   8篇
  2000年   13篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1968年   2篇
  1938年   1篇
排序方式: 共有355条查询结果,搜索用时 390 毫秒
301.

Surrogate models are becoming increasingly popular for storm surge predictions. Using existing databases of storm simulations, developed typically during regional flood studies, these models provide fast-to-compute, data-driven approximations quantifying the expected storm surge for any new storm (not included in the training database). This paper considers the development of such a surrogate model for Delaware Bay, using a database of 156 simulations driven by synthetic tropical cyclones and offering predictions for a grid that includes close to 300,000 computational nodes within the geographical domain of interest. Kriging (Gaussian Process regression) is adopted as the surrogate modeling technique, and various relevant advancements are established. The appropriate parameterization of the synthetic storm database is examined. For this, instead of the storm features at landfall, the features when the storm is at closest distance to some representative point of the domain of interest are investigated as an alternative parametrization, and are found to produce a better surrogate. For nodes that remained dry for some of the database storms, imputation of the surge using a weighted k nearest neighbor (kNN) interpolation is considered to fill in the missing data. The use of a secondary, classification surrogate model, combining logistic principal component analysis and Kriging, is examined to address instances for which the imputed surge leads to misclassification of the node condition. Finally, concerns related to overfitting for the surrogate model are discussed, stemming from the small size of the available database. These concerns extend to both the calibration of the surrogate model hyper-parameters, as well as to the validation approaches adopted. During this process, the benefits from the use of principal component analysis as a dimensionality reduction technique, and the appropriate transformation and scaling of the surge output are examined in detail.

  相似文献   
302.
The Kingston Peak Formation of the Pahrump Group in the Death Valley region of the Basin and Range Province, USA, is the thick (over 3 km) mixed siliciclastic–carbonate fill of a long‐lived structurally‐complex Neoproterozoic rift basin and is recognized by some as a key ‘climatostratigraphic’ succession recording panglacial Snowball Earth events. A facies analysis of the Kingston Peak Formation shows it to be largely composed of ‘tectonofacies’ which are subaqueous mass flow deposits recording cannibalization of older Pahrump carbonate strata exposed by local faulting. Facies include siltstone, sandstone and conglomerate turbidites, carbonate megabreccias (olistoliths) and related breccias, and interbedded debrites. Secondary facies are thin carbonates and pillowed basalts. Four distinct associations of tectonofacies (‘base‐of‐scarp’; FA1, ‘mid‐slope’; FA2, ‘base‐of‐slope’; FA3, and a ‘carbonate margin’ association; FA4) reflect the initiation and progradation of deep water clastic wedges at the foot of fault scarps. ‘Tectonosequences’ record episodes of fault reactivation resulting in substantial increases in accommodation space and water depths, the collapse of fault scarps and consequent downslope mass flow events. Carbonates of FA4 record the cessation of tectonic activity and resulting sediment starvation ending the growth of clastic wedges. Tectonosequences are nested within regionally‐extensive tectono‐stratigraphic units of earlier workers that are hundreds to thousands of metres in thickness, recording the long‐term evolution of the rifted Laurentian continental margin during the protracted breakup of Rodinia. Debrite facies of the Kingston Peak Formation are classically described as ice‐contact glacial deposits recording globally‐correlative panglacials but they result from partial to complete subaqueous mixing of fault‐generated coarse‐grained debris and fine‐grained distal sediment on a slope conditioned by tectonic activity. The sedimentology (tectonofacies) and stratigraphy (tectonosequences) of the Kingston Peak Formation reflect a fundamental control on local sedimentation in the basin by faulting and likely earthquake activity, not by any global glacial climate.  相似文献   
303.
The current generation of hydrological models has been widely criticized for their inability to adequately simulate hydrological processes. In this study, we evaluate competing model representations of hydrological processes with respect to their capability to simulate observed processes in the Mahurangi River basin in Northland, New Zealand. In the first part of this two‐part series, the precipitation, soil moisture, and flow data in the Mahurangi were used to estimate the dominant hydrological processes and explore several options for their suitable mathematical representation. In this paper, diagnostic tests are applied to gain several insights for model selection. The analysis highlights dominant hydrological processes (e.g. the importance of vertical drainage and baseflow compared to sub‐surface stormflow), provides guidance for the choice of modelling approaches (e.g. implicitly representing sub‐grid heterogeneity in soils), and helps infer appropriate values for model parameters. The approach used in this paper demonstrates the benefits of flexible model structures in the context of hypothesis testing, in particular, supporting a more systematic exploration of current ambiguities in hydrological process representation. The challenge for the hydrological community is to make better use of the available data, not only to estimate parameter values but also to diagnostically identify more scientifically defensible model structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
304.
We have estimated the speed and direction of propagation of a number of Coronal Mass Ejections (CMEs) using single-spacecraft data from the STEREO Heliospheric Imager (HI) wide-field cameras. In general, these values are in good agreement with those predicted by Thernisien, Vourlidas, and Howard in Solar Phys. 256, 111?–?130 (2009) using a forward modelling method to fit CMEs imaged by the STEREO COR2 coronagraphs. The directions of the CMEs predicted by both techniques are in good agreement despite the fact that many of the CMEs under study travel in directions that cause them to fade rapidly in the HI images. The velocities estimated from both techniques are in general agreement although there are some interesting differences that may provide evidence for the influence of the ambient solar wind on the speed of CMEs. The majority of CMEs with a velocity estimated to be below 400 km?s?1 in the COR2 field of view have higher estimated velocities in the HI field of view, while, conversely, those with COR2 velocities estimated to be above 400 km?s?1 have lower estimated HI velocities. We interpret this as evidence for the deceleration of fast CMEs and the acceleration of slower CMEs by interaction with the ambient solar wind beyond the COR2 field of view. We also show that the uncertainties in our derived parameters are influenced by the range of elongations over which each CME can be tracked. In order to reduce the uncertainty in the predicted arrival time of a CME at 1 Astronomical Unit (AU) to within six hours, the CME needs to be tracked out to at least 30 degrees elongation. This is in good agreement with predictions of the accuracy of our technique based on Monte Carlo simulations. Within the set of studied CMEs, there are two clear events that were predicted from the HI data to travel over another spacecraft; in-situ measurements at these other spacecraft confirm the accuracy of these predictions. The ability of the HI cameras to image Corotating Interaction Region (CIR)-entrained transients as well as CMEs can result in some ambiguity when trying to distinguishing individual signatures.  相似文献   
305.
A New Zealand palaeotsunami database has been developed. The philosophy has been to include as much tsunami-related data as possible. Most of the events recorded are true palaeotsunamis that occurred prior to the historical record or have no written observations. Some are hybrids that are in some manner poorly recorded historical events. Data include physical evidence from geological, archaeological and geomorphological sources and cultural information from anthropological research and prehistorical Māori oral recordings. Each line of data represents a summary of one piece of evidence containing key details listed under a series of headings. The estimated veracity of each line item is based upon the sum of the information contained in the linked reference(s). The palaeotsunami database contains approximately 300 line items and describes between 35 and 40 palaeotsunamis. This wealth of data helps to improve our understanding of tsunami sources, event its magnitude and frequency.  相似文献   
306.
Mesoproterozoic (~ 1050 Ma; Stenian) zircon crystals from the Saranac Prospect, Bancroft, Ontario, contain up to ~ 1 wt.% U and ~ 0.15 wt.% Th and, correspondingly, they are for the most part extensively radiation-damaged (calculated total α-doses 2.3?35.3 × 1018/g). The crystals show textures of complex, intense chemical alteration that is attributed to multiple, low-T replacement events along fluid-controlled reaction fronts. Centers of crystals appear totally replaced; the primary zoning is virtually erased and the material has high porosity and numerous inclusions. Interior regions surrounding the central reworked areas still exhibit primary igneous-type zoning; in those regions the alteration emanates from fractures and then follows the more radiation-damaged growth zones. Altered areas are typically recognized by their high porosity, low BSE intensity, and deficient analytical totals. Those regions often have lost a significant fraction of their radiogenic Pb. They are in general somewhat depleted in Zr, Si, and U, and are notably enriched in Ca and Fe. Element maps reveal elevated concentrations of Al and Y within filled fractures. Our observations indicate that the fluid-driven ion exchange is mainly controlled by the accessibility of micro-areas with elevated levels of radiation damage to transporting fluids via “fast pathways”. Most importantly, there is apparent Zr?Si?U equilibrium between initially existing and newly formed zircon. The retention of U after the chemical replacement (94 ± 14% relative to the original U content in the respective zones) does not significantly fall below the retention of two major cations Zr (95 ± 4%) and Si (95 ± 2%). In spite of the partially extreme hydrothermal alteration overprinting, the original U zoning in the crystals is well preserved. These observations suggest that preferential chemical leaching of U from zircon is clearly not a general feature of this mineral. This in turn seems to question the general validity of hydrothermal experiments to low-T, fluid-driven alteration of zircon in geological environments. The observed apparent immobility of U may affect the interpretation of U?Pb discordance in zircon, and the performance assessment of this mineral as potential waste form for actinides.  相似文献   
307.
Nonpoint sources of nitrogen (N) and other nutrients are a major source of water pollution within the Chesapeake Bay watershed and other basins around the world. Human activities associated with agricultural practices can account for a large percentage of N loadings delivered to streams and rivers. This work aims to improve understanding of N transport from groundwater to surface waters, quantifying the principal hydrological processes driving water and N fluxes into and out of a headwater agricultural stream reach. The study site is a 175-m stream reach in a heavily cultivated 40-ha watershed in east-central Pennsylvania. This subwatershed is underlain by fractured shale bedrock, and receives most of its baseflow from groundwater, either by diffuse matrix discharge through the streambed or by localized discharge through riparian seeps. Samples of stream, seep, and shallow groundwater were collected approximately monthly under steady hydrologic conditions in 2017. Calculated matrix flow from hydraulic head and conductivity measurements paired with differential stream gauging was used to solve for the riparian seep flux using a mass balance approach. Riparian seep fluxes ranged from 45 to 217 m3/d, transporting 0.6–4.2 kg N d−1 of nitrate-N from the fractured bedrock aquifer to the stream. Hydrochemical data suggest that the stream is mainly disconnected from the underlying aquifer and that seeps supply essentially all water and N to the system. Seeps are likely sourced with N in nearby agricultural fields and accelerated through the system with shorter residence times than shallow groundwater. Water isotope data reinforced this notion. This study underscores the importance of agriculture as a source of N to ground and surface waters. Identifying source areas that are causing groundwater enrichment of N and seep areas where N discharges to streams is beneficial for developing N pollution mitigation strategies and implementing management practices that aim to reduce nutrient loads to the Chesapeake Bay.  相似文献   
308.
We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25 m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8 m × 8 m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space–time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt–Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.  相似文献   
309.
Summer isotherms in Lake Wakatipu (maximum depth 380 m) show clear stratification and develop a downslope to the south or downwind end. The thermocline reaches a maximum depth of 150 m and the major part of seasonal temperature variation occurs above 130 m.  相似文献   
310.
Regional climates are a major factor in determining the distribution of many species. Anthropogenic inputs of greenhouse gases into the atmosphere have been predicted to cause rapid climatic changes in the next 50–100 years. Species such as the Gila trout (Oncorhynchus gilae) that have small ranges, limited dispersal capabilities, and narrow physiological tolerances will become increasingly susceptible to extinction as their climate envelope changes. This study uses a regional climate change simulation (Leung et al., Clim Change 62:75–113, 2004) to determine changes in the climate envelope for Gila trout, which is sensitive to maximum temperature, associated with a plausible scenario for greenhouse gas increases. These regional climate changes are downscaled to derive surface temperature lapse rates using regression models. This procedure indicates that suitable, warm season habitat for Gila trout will be reduced by 70% by decreasing the size of their climate envelope. Warmer temperatures coupled with a decrease in summer precipitation would also tend to increase the intensity and frequency of forest fires that are a major threat to their survival. The climate envelope approach utilized here could be used to assess climate change threats to other rare species with limited ranges and dispersal capabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号