首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   8篇
  国内免费   4篇
测绘学   3篇
大气科学   8篇
地球物理   95篇
地质学   66篇
海洋学   61篇
天文学   30篇
综合类   1篇
自然地理   20篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   8篇
  2017年   5篇
  2016年   8篇
  2015年   3篇
  2014年   10篇
  2013年   11篇
  2012年   13篇
  2011年   11篇
  2010年   11篇
  2009年   23篇
  2008年   12篇
  2007年   14篇
  2006年   15篇
  2005年   10篇
  2004年   7篇
  2003年   9篇
  2002年   7篇
  2001年   9篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   7篇
  1995年   2篇
  1994年   4篇
  1993年   8篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1965年   1篇
排序方式: 共有284条查询结果,搜索用时 31 毫秒
131.
Highly forsteritic olivine (Fo: 99.2–99.7) in the Kaba meteorite emits bright cathodoluminescence (CL). CL spectra of red luminescent forsterite grains have two broad emission bands at approximately 630 nm (impurity center of divalent Mn ions) in the red region and above 700 nm (trivalent Cr ions) in the red–IR region. The cores of the grains show CL blue luminescence giving a characteristic broad band emission at 400 nm, also associated with minor red emissions related to Mn and Cr ions. CL color variation of Kaba forsterite is attributed to structural defects. Electron probe microanalyzer (EPMA) analysis shows concentrations of Ca, Al, and Ti in the center of the forsterite grain. The migration of diffusible ions of Mn, Cr, and Fe to the rim of the Kaba meteoritic forsterite was controlled by the hydrothermal alteration at relatively low temperature (estimated at about 250 °C), while Ca and Al ions might still lie in the core. A very unusual phase of FeO (wüstite) was also observed, which may be a terrestrial alteration product of FeNi‐metal.  相似文献   
132.
The isotopic and ionic composition of pure gas hydrate (GH) water was examined for GHs recovered in three gravity cores (165–193 cm length) from the Kukuy K-9 mud volcano (MV) in Lake Baikal. A massive GH sample from core St6GC4 (143–165 cm core depth interval) was dissociated progressively over 6 h in a closed glass chamber, and 11 sequentially collected fractions of dissociated GH water analyzed. Their hydrogen and oxygen isotopic compositions, and the concentrations of Cl and HCO3 remained essentially constant over time, except that the fraction collected during the first 50 minutes deviated partly from this pattern. Fraction #1 had a substantially higher Cl concentration, similar to that of pore water sampled immediately above (135–142 cm core depth) the main GH-bearing interval in that core. Like the subsequent fractions, however, the HCO3 concentration was markedly lower than that of pore water. For the GH water fractions #2 to #11, an essentially constant HCO3 /Cl ratio of 305 differed markedly from downcore pore water HCO3 /Cl ratios of 63–99. Evidently, contamination of the extracted GH water by ambient pore water probably adhered to the massive GH sample was satisfactorily restricted to the initial phase of GH dissociation. The hydrogen and oxygen isotopic composition of hydrate-forming water was estimated using the measured isotopic composition of extracted GH water combined with known isotopic fractionation factors between GH and GH-forming water. Estimated δD of ?126 to ?133‰ and δ18O of ?15.7 to ?16.7‰ differed partly from the corresponding signatures of ambient pore water (δD of ?123‰, δ18O of ?15.6‰) and of lake bottom water (δD of ?121‰, δ18O of ?15.8‰) at the St6GC4 coring site, suggesting that the GH was not formed from those waters. Observations of breccias in that core point to a possible deep-rooted water source, consistent with published thermal measurements for the neighboring Kukuy K-2 MV. By contrast, the pore waters of core St6GC4 and also of the neighboring cores GC2 and GC3 from the Kukuy K-9 MV show neither isotopic nor ionic evidence of such a source (e.g., elevated sulfate concentration). These findings constrain GH formation to earlier times, but a deep-rooted source of hydrate-forming water remains ambiguous. A possible long-term dampening of key deep-water source signatures deserves further attention, notably in terms of diffusion and/or advection, as well as anaerobic oxidation of methane.  相似文献   
133.
ABSTRACT

Government efforts to industrialise and modernise the Lao economy through intensive resource development are having adverse effects on rural livelihoods as resources are degraded and access to limited land and natural resources has intensified. In one of the country's key river basins, Nam Ngum, a series of resource developments including hydropower, mining and agricultural plantations have modified the landscape over the last four decades. Uncoordinated resource developments are putting intense pressure on increasingly scarce natural resources and affecting the lives of people who are dependent on them. Economic diversification of rural households in Feuang District in the Nam Ngum River Basin has created significant discrepancies between the rich and the poor, yet all households remain primarily dependent on agriculture. Land is of enduring importance to rural livelihoods. National development intervention has failed to secure basic livelihoods for rural households.  相似文献   
134.
135.
We present precise geodetic and satellite observation-based estimations of the erupted volume and discharge rate of magma during the 2011 eruptions of Kirishima-Shinmoe-dake volcano, Japan. During these events, the type and intensity of eruption drastically changed within a week, with three major sub-Plinian eruptions on January 26 and 27, and a continuous lava extrusion from January 29 to 31. In response to each eruptive event, borehole-type tiltmeters detected deflation of a magma chamber caused by migration of magma to the surface. These measurements enabled us to estimate the geodetic volume change in the magma chamber caused by each eruptive event. Erupted volumes and discharge rates were constrained during lava extrusion using synthetic aperture radar satellite imaging of lava accumulation inside the summit crater. Combining the geodetic volume change and the volume of lava extrusion enabled the determination of the erupted volume and discharge rate during each sub-Plinian event. These precise estimates provide important information about magma storage conditions in magma chambers and eruption column dynamics, and indicate that the Shinmoe-dake eruptions occurred in a critical state between explosive and effusive eruption.  相似文献   
136.
We present a Hamiltonian particle method (HPM) with a staggered particle technique for simulating seismic wave propagation. In the conventional HPM, physical variables, such as particle displacement and stress, are defined at the center, i.e., at the same position, of each particle. As most seismic simulations using finite difference methods (FDM) are practiced with staggered grid techniques, we know the staggered alignment of space variables could improve the numerical accuracy. In the present study, we hypothesized that staggered technique could improve the numerical accuracy also in the HPM and tested the hypothesis. First, we conducted a plane wave analysis for the HPM with the staggered particles in order to verify the validity of our strategy. The comparison of grid dispersion in our strategy with that in the conventional one suggests that the accuracy would be improved dramatically by use of the staggered technique. It is also observed that the dispersion of waves is dependent on the propagation direction due to the difference in the average spacing of the neighboring two particles for the same parameters, as is usually observed in FDM with a rotated staggered grid. Next, we compared the results from the conventional Lamb’s problem using our HPM with those from an analytical approach in order to demonstrate the effectiveness of the staggered particle technique. Our results showed better agreement with the analytical solutions than those from HPM without the staggered particles. We conclude that the staggered particle technique would be a method to improve the calculation accuracy in the simulation of seismic wave propagation.  相似文献   
137.
Seiji Yasuda  Hitoshi Miura 《Icarus》2009,204(1):303-315
We carried out three-dimensional hydrodynamics simulations of the disruption of a partially-molten dust particle exposed to high-speed gas flow to examine the compound chondrule formation due to mutual collisions between the fragments (fragment-collision model; [Miura, H., Yasuda, S., Nakamoto, T., 2008a. Icarus194, 811-821]).In the shock-wave heating model, which is one of the most plausible models for chondrule formation, the gas friction heats and melts the surface of the cm-sized dust particle (parent particle) and then the strong gas ram pressure causes the disruption of the molten surface layer. The hydrodynamics simulation shows details of the disruptive motion of the molten surface, production of many fragments and their trajectories parting from the parent particle, and mutual collisions among them. In our simulation, we identified 32 isolated fragments extracted from the parent particle. The size distribution of the fragments was similar to that obtained from the aerodynamic experiment in which a liquid layer was attached to a solid core and it was exposed to a gas flow. We detected 12 collisions between the fragments, which may result in the compound chondrule formation. We also analyzed the paths of all the fragments in detail and found the importance of the shadow effect in which a fragment extracted later blocks the gas flow toward a fragment extracted earlier. We examined the collision velocity and impact parameter of each collision and found that 11 collisions should result in coalescence. It means that the ratio of coalescent bodies to single bodies formed in this disruption of a parent particle is Rcoa=11/(32-11)=0.52. We concluded that compound chondrule formation can occur just after the disruption of a cm-sized molten dust particle in shock-wave heating.  相似文献   
138.
The first P-arrival time data from local earthquakes are inverted for two-dimensional variation of the depths to the Conrad and Moho discontinuities in the Kyushu district, southwest Japan. At the same time, earthquake hypocenters and station corrections are determined from the data. The depths to the discontinuities are estimated by minimizing the travel time residuals of first P-arrival phases for 608 earthquakes observed at 57 seismic stations. In the land area of Kyushu, the Conrad and Moho discontinuities are located within the depth ranges of 16–18 and 34–40 km, respectively. The Conrad discontinuity is not as largely undulated as the Moho discontinuity. The depth to the Moho is deep along the east coast of Kyushu, and the deepest Moho is closely related to markedly low velocity of P wave. We regard the deepest Moho as reflecting the Kyushu–Palau ridge subducting beneath the Kyushu district, together with the Philippine Sea slab. In western Kyushu, the shallow Moho is spreading in the north–northeast–south–southwest direction in the Okinawa trough region. Based on the presence of low-velocity anomaly in three-dimensional velocity structure and seismogenic stress field of shallow crustal earthquakes, the shallow Moho is interpreted as being due to lower crustal erosion associated with a small-scale mantle upwelling in the Okinawa trough region. The velocity discontinuity undulation basically has insignificant effect on hypocenter determination of the local earthquakes, but the Moho topography makes changes in focal depths of some upper mantle earthquakes. The depth variation of the Moho discontinuity has a good correlation with the Bouguer gravity anomaly map; i.e., the shallow Moho of western Kyushu and the deep Moho of eastern Kyushu closely correlate with the positive and negative Bouguer gravity anomalies, respectively.  相似文献   
139.
We developed a new numerical model of the Jovian magnetosphere-ionosphere coupling current system in order to investigate the effects of diurnal variation of ionospheric conductance. The conductance is determined by ion chemical processes that include the generation of hydrogen and hydrocarbon ions by solar EUV radiation and auroral electrons precipitation. The model solves the torque equations for magnetospheric plasma accelerated by the radial currents flowing along the magnetospheric equator. The conductance and magnetospheric plasma then change the field-aligned currents (FACs) and the intensity of the electric field projected onto the ionosphere. Because of the positive feedback of the ionospheric conductance on the FAC, the FAC is the maximum on the dayside and minimum just before sunrise. The power transferred from the planetary rotation is mainly consumed in the upper atmosphere on the dayside, while it is used for magnetospheric plasma acceleration in other local time (LT) sectors. Further, our simulations show that the magnetospheric plasma density and mass flux affect the temporal variation in the peak FAC density. The enhancement of the solar EUV flux by a factor of 2.4 increases the FAC density by 30%. The maximum density of the FAC is determined not only by the relationship between the precipitating electron flux and ionospheric conductance, but also by the system inertia, i.e., the inertia of the magnetospheric plasma. A theoretical analysis and numerical simulations reveal that the FAC density is in proportion to the planetary angular velocity on the dayside and to the square of the planetary angular velocity on the nightside. When the radial current at the outer boundary is fixed at values above 30 MA, as assumed in previous model studies, the peak FAC density determined at latitude 73°-74° is larger than the diurnal variable component. This result suggests large effects of this assumed radial current at the outer boundary on the system.  相似文献   
140.
We describe the petrography and mineralogy of six CV3 carbonaceous chondrites. LAP02206, LAP02228, LAP04843, and GRA06101 are classified as oxidized Allende-like chondrites (CV3oxA). RBT04143 and QUE97186 are classified as members of the reduced subtype (CV3red). Chondrules in the CV3oxA chondrites show extensive Fe–Mg zoning. Fe-rich olivine in the rims of the CV3oxA chondrules are 16O-poor relative to Mg-rich olivine in the cores, suggesting that in addition to Fe and Mg, oxygen was exchanged between chondrules and matrix during weak thermal metamorphism. The CV3red chondrites appear to have formed through various processes. QUE97186 shows chondrule flattening with a preferred orientation, which is interpreted to have resulted from shock impact at a pressure of ~20 GPa. The post-shock residual heat (~1000 °C) is likely to be responsible for the restricted Fe/Mg ratios of matrix olivine. Based on the degree of Fe–Mg homogenization of matrix olivines, we estimate the spatial scale of the shock-heated region to be ~1 m. RBT04143 is a breccia containing many clasts of two types of lithologies: reduced-type material and very weakly altered material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号