首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  国内免费   1篇
测绘学   3篇
地球物理   8篇
地质学   13篇
海洋学   16篇
天文学   1篇
自然地理   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
21.
22.
23.
To determine the impact of genetic toxicity caused by the Hebei Spirit oil spill on December 7, 2007, we measured DNA damage in the blood cells of striped beakperch in vitro after exposure to extracts from sediments in the Taean area. The objective of this study was to investigate temporal changes of toxic effects caused by residual PAHs in the sediments up to 18 months after an oil spill. In conclusion, DNA damage had reduced over this 18-month period; that is, the sediments recovered quickly from the oil pollution. In addition, statistically significant correlations between PAHs and DNA damage were observed. Because the comet assay is sensitive to DNA damage induced by genotoxic substances from the polluted sediments, the comet assay can be considered a useful tool as a biomarker in investigating genetic toxicity in environmental monitoring and elucidating the recovery of oil pollution after oil spill as well.  相似文献   
24.
The local configurations around sodium ions in silicate glasses and melts and their distributions have strong implications for the dynamic and static properties of melts and thus may play important roles in magmatic processes. The quantification of distributions among charge-balancing cations, including Na+ in aluminosilicate glasses and melts, however, remains a difficult problem that is relevant to high-temperature geochemistry as well as glass science.Here, we explore the local environment around Na+ in charge-balanced aluminosilicate glasses (the NaAlO2-SiO2 join) and its distribution using 23Na magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy at varying magnetic fields of 9.4, 14.1, and 18.8 T, as well as triple-quantum (3Q)MAS NMR spectroscopy at 9.4 T, to achieve better understanding of the extent of disorder around this cation. We quantify the extent of this disorder in terms of changes in Na-O distance (d[Na-O]) distributions with composition and present a structural model favoring a somewhat ordered Na distribution, called a “perturbed” Na distribution model. The peak position in 23Na MAS spectra of aluminosilicate glasses moves toward lower frequencies with increasing Si/Al ratios, implying that the average d(Na-O) increases with increasing R. The peak width is significantly reduced at higher fields (14.1 and 18.8 T) because of the reduced effect of second-order quadrupolar interaction, and 23Na MAS NMR spectra thus provide relatively directly the Na chemical shift distribution and changes in atomic environment with composition. Chemical shift distributions obtained from 23Na 3Q MAS spectra are consistent with MAS NMR data, in which deshielding decreases with R. The average distances between Na and the three types of bridging oxygens (BOs) (Na-{Al-O-Al}, Na-{Si-O-Al}, and Na-{Si-O-Si}) were obtained from the correlation between d(Na-O) and isotropic chemical shift. The calculated d(Na-{Al-O-Al}) of 2.52 Å is shorter than the d(Na-{Si-O-Si}) of 2.81 Å, and d(Na-{Al-O-Al}) shows a much narrower distribution than the other types of BOs. 23Na chemical shifts in binary (Al-free) sodium silicate glasses are more deshielded and have ranges distinct from those of aluminosilicate glasses, implying that d(Na-NBO) (nonbridging oxygen) is shorter than d(Na-BO) and that d(Na-{Si-O-Si}) in binary silicates can be shorter than that in aluminosilicate glasses. The results given here demonstrate that high-field 23Na NMR is an effective probe of the Na+ environment, providing not only average structural information but also chemically and topologically distinct chemical shift ranges (distributions) and their variation with composition and their effects on static and dynamic properties.  相似文献   
25.
In this study we describe measures taken in our laboratory to improve the long-term precision of nitrate and ammonia analysis in seawater using a microflow segmented-flow analyzer. To improve the nitrate reduction efficiency using a flow-through open tube cadmium reactor (OTCR), we compared alternative buffer formulations and regeneration procedures for an OTCR. We improved long-term stability for nitrate with a modified flow scheme and color reagent formulation and for ammonia by isolating samples from the ambient air and purifying the air used for bubble segmentation. We demonstrate the importance of taking into consideration the residual nutrient content of the artificial seawater used for the preparation of calibration standards. We describe how an operating procedure to eliminate errors from that source as well as from the refractive index of the matrix itself can be modified to include the minimization of dynamic refractive index effects resulting from differences between the matrix of the samples, the calibrants, and the wash solution. We compare the data for long-term measurements of certified reference material under two different conditions, using ultrapure water (UPW) and artificial seawater (ASW) for the sampler wash.  相似文献   
26.
The high nutrient concentration associated with the mixing dynamics of two warm and cold water masses supports high primary production in the Yellow Sea. Although various environmental changes have been reported, no recent information on small phytoplankton contribution to the total primary production as an important indicator for marine ecosystem changes is currently available in the Yellow Sea. The major objective of this study is to determine the small (< 2 μm) phytoplankton contribution to the total primary production in the Yellow Sea during August, 2016. In this study, we found relatively lower chlorophyll a concentrations in the water column than those previously reported in the central waters of the Yellow Sea. Moreover, the overall contribution of small phytoplankton (53.1%) to the total chlorophyll a concentration was considerably higher in this study than that (10.7%) observed previously. Based on the N/P ratio (67.6 ± 36.6) observed in this study, which is significantly higher than the Redfield ratio (16), we believe that phytoplankton experienced P-limiting conditions during the study period. The average daily carbon uptake rate of total phytoplankton in this study was 291.1 mg C m-2 d-1 (± 165.0 mg C m-2 d-1) and the rate of small phytoplankton was 205.7 mg C m-2 d-1 (± 116.0 mg C m-2 d-1) which is 71.9% (± 8.8%) of the total daily carbon uptake rate. This contribution of small phytoplankton observed in this study appears to be higher than that reported previously. Our recent measured primary production is approximately 50% lower than the previous values decades ago. The higher contributions of small phytoplankton to the total chlorophyll a concentration and primary production might be caused by P-limited conditions and this resulted in lower chlorophyll a concentration and total primary production in this study compared to previous studies.  相似文献   
27.
Thomson scattering is often invoked to explain broad wing features that are seen in various objects including active galactic nuclei and symbiotic stars. Despite the wavelength-independent scattering cross-section of Thomson scattering, the line flux may exhibit wavelength-dependent linear degree of polarization, because various parts of emission wings are contributed by photons with different scattering numbers. Specifically, more scattered and hence more weakly polarized photons tend to fill the farther wing parts from the line centre, while the neighbourhood of the line centre is dominated by less-scattered photons with higher degree of polarization. Using a Monte Carlo technique, we investigate the polarization structure of Thomson-scattered line radiation. A detailed analysis of polarization structure formation is conducted by investigating the dependence of the polarization and profile width on the scattering number for various finite electron scattering slabs. Significantly varying degree of polarization is obtained when the scattering medium has Thomson optical depth  τTh≥ 1  . We present our high-resolution spectrum of the symbiotic star V1016 Cyg obtained with the Bohyunsan Optical Echelle Spectrograph (BOES) in order to fit the broad profile around Hα by electron scattering wings adopting an oblate spheroidal geometry with Thomson optical depth  τTh= 0.5  and electron temperature   T e= 6.2 × 104  K  . Local maxima in the linear degree of polarization of Thomson-scattered line radiation are expected to appear in the spectral regions characterized by the average scattering number ≃1.  相似文献   
28.
The properties of sands pertaining to shear strength have been studied extensively by plane strain and triaxial tests for relative densities above 40%. Unfortunately, properties of sand have not been comprehensively studied for relative density below 40%. An experimental investigation of the shear strength of Jumunjin sand was carried out using a plane strain, triaxial and direct shear apparatus according to relative density ranges from 0 to 100%. Because of the complexity of the shear tests on coarse materials, correlations were developed that would be useful for practical purposes. This article presents a comparison of strength properties' results and their correlation with relative density.  相似文献   
29.
We present a multi-proxy record (pollen, microscopic charcoal, magnetic susceptibility, carbon-isotopic composition, total organic carbon [TOC], carbon/nitrogen [C/N] ratios, and particle size) of the late Holocene environmental change and human activities from Bongpo marsh on the east coast of Korea. Mutual interaction between the environment and humans during the late Holocene has not been properly investigated in Korea due to the lack of undisturbed samples with high sedimentation rates. In this study, the history of human responses to late Holocene environmental changes is clearly reconstructed using a multi-proxy paleoenvironmental approach that has not previously been applied in Korea. The evidence from Bongpo marsh indicates that 1) Bongpo marsh began to develop ca. 650 BC as a coastal lagoon was rapidly filled with organic matter, 2) agricultural disturbance around the study site remained slight until ca. AD 600, 3) full-scale intensive agriculture prevailed and the area of deforestation increased between ca. AD 600 and ca. AD 1870, and 4) the land use changed from lowland rice agriculture to upland cultivation when agricultural productivity declined after AD 1870, probably due to severe deforestation and the consequent heavy influx of clastic sediment on rice fields, as described in various historical documents.  相似文献   
30.
Recent development and advances in solid state NMR, together with theoretical analyses using quantum-chemical calculations and statistical mechanical modeling, have allowed us to estimate and quantify the detailed distributions of cations and anions in model silicate glasses and melts with varying pressure, temperature and composition. How these microscopic, atomic-scale distributions in the melts from NMR and simulations affect the thermodynamic and transport properties relevant to magmatic processes has been extensively explored recently. Here, based on these previous studies, we present a classification scheme to quantify the various aspects of disorder in covalent oxide glasses and melts on scales of less than 1 nm. The scheme includes contributions from both chemical and topological disorder. Chemical disorder can further be divided into [1] connectivity, which quantifies the extent of mixing among framework units (often parameterized by the degree of Al avoidance or phase separation) and the extent of polymerization (mixing between framework and nonframework cations), and [2] nonframework disorder, which denotes the distribution of network-modifying or charge-balancing cations. Topological disorder includes the distribution of bond lengths and angles. We use this framework of disorder quantification to summarize recent progress on the structures of silicate melts and glasses, mainly obtained from 2D triple quantum magic-angle spinning (3QMAS) NMR, as functions of temperature, pressure, and composition.Most glasses and melts studied show a tendency for chemical ordering in connectivity, nonframework disorder and topological disorder at ambient and high pressure. The chemical ordering in framework disorder, a manifestation of energetics in the melts and glasses, contributes to the total negative deviation of activity of oxides from ideal solution in silicate melts (reduced activity). While no definite evidence of clustering among nonframework cations was found, these cations tend to form dissimilar pairs upon mixing with other types of network modifying cations. Topological disorder in silicate glasses and melts tends to increase with increasing pressure, as suggested by increasing bond angle and length distribution, while the chemical order seems to be maintained with pressure. We calculate key macroscopic properties, including the activity coefficient of silica and viscosity, based on the quantitative estimation of the extent of disorder from solid-state NMR, in particular 17O 3QMAS NMR. Structural ordering in melts may strongly affect the composition of partial melts in equilibrium with solids, increasing the silica composition of partial melts as a result. With increasing chemical order, the configurational entropy decreases, which can be correlated to an increase in viscosity of melts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号