首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
大气科学   20篇
地球物理   1篇
地质学   11篇
海洋学   5篇
天文学   1篇
自然地理   6篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   5篇
  1997年   2篇
  1996年   7篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1988年   1篇
  1979年   1篇
  1973年   1篇
  1965年   1篇
排序方式: 共有44条查询结果,搜索用时 62 毫秒
41.
The atmospheric sulfur cycle of the remote Arctic marine boundary layer is studied using trajectories and measurements of sulfur compounds from the International Arctic Ocean Expedition 1991, along with a pseudo-Lagrangian approach and an analytical model. The dimethyl sulfide [DMS(g)] turnover time was  h. Only  % of DMS(g) followed reaction paths to sulfur dioxide [SO2(g)], sub-micrometre aerosol non-seasalt sulfate (nss-SO42−) or methane sulfonate (MSA). During the first 3 d of transport over the pack ice, fog deposition and drizzle resulted in short turnover times;  h for SO2(g),  h for MSA and  h for nss-SO42−. Therefore, DMS(g) will, owing to its origin along or south of the ice edge and longer turnover time, survive the original sub-micrometre sulfur aerosol mass and gradually replace it with new biogenic sulfur aerosol mass. The advection of DMS(g) along with heat and moisture will influence the clouds and fogs over the Arctic pack ice through the formation of cloud condensation nuclei (CCN). If the pack ice cover were to decrease owing to a climate change, the total Arctic Ocean DMS production would change, and potentially there could be an ice–DMS–cloud–albedo climate feedback effect, but it would be accompanied by changes in the fog aerosol sink.  相似文献   
42.
43.
44.
The article discusses the nature of the glacial inversion problem, which is defined as the extraction of time-slice ice-sheet flow patterns from the patchy and partly overprinted landform record present in former ice-sheet areas. A coherent inversion model for derivation of flow patterns and interior ice-sheet configuration from geomorphological data is presented. Glacial landscapes are classified according to the three criteria of internal age gradients, presence or absence of meltwater traces aligned to flow traces, and basal condition (frozen bed/thawed bed) inferred from morphology. The inversion model uses landscapes classified accordingly, spatially delineated into fans, as input data. Relative chronologies at fan intersections are used to sort fans in a relative-age stack that can be linked to stratigraphic (dating) information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号