首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15121篇
  免费   1613篇
  国内免费   71篇
测绘学   580篇
大气科学   950篇
地球物理   5887篇
地质学   5190篇
海洋学   823篇
天文学   2513篇
综合类   65篇
自然地理   797篇
  2022年   91篇
  2021年   240篇
  2020年   293篇
  2019年   373篇
  2018年   656篇
  2017年   715篇
  2016年   946篇
  2015年   799篇
  2014年   914篇
  2013年   1158篇
  2012年   898篇
  2011年   914篇
  2010年   825篇
  2009年   758篇
  2008年   715篇
  2007年   542篇
  2006年   526篇
  2005年   461篇
  2004年   421篇
  2003年   403篇
  2002年   371篇
  2001年   318篇
  2000年   288篇
  1999年   174篇
  1998年   204篇
  1997年   155篇
  1996年   111篇
  1995年   128篇
  1994年   139篇
  1993年   98篇
  1992年   105篇
  1991年   92篇
  1990年   120篇
  1989年   93篇
  1988年   66篇
  1987年   74篇
  1986年   68篇
  1985年   89篇
  1984年   69篇
  1983年   87篇
  1982年   81篇
  1981年   71篇
  1980年   74篇
  1979年   81篇
  1978年   78篇
  1977年   61篇
  1975年   69篇
  1973年   82篇
  1972年   58篇
  1971年   63篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
21.
The ordinary kriging method, a geostatistical interpolation technique, was applied for developing contour maps of design storm depth in northern Taiwan using intensity–duration–frequency (IDF) data. Results of variogram modelling on design storm depths indicate that the design storms can be categorized into two distinct storm types: (i) storms of short duration and high spatial variation and (ii) storms of long duration and less spatial variation. For storms of the first category, the influence range of rainfall depth decreases when the recurrence interval increases, owing to the increasing degree of their spatial independence. However, for storms of the second category, the influence range of rainfall depth does not change significantly and has an average of approximately 72 km. For very extreme events, such as events of short duration and long recurrence interval, we do not recommend usage of the established design storm contours, because most of the interstation distances exceed the influence ranges. Our study concludes that the influence range of the design storm depth is dependent on the design duration and recurrence interval and is a key factor in developing design storm contours. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
22.
Using the heuristic arguments of quantum physics we describe a new mechanism of the creation of short-living particles from the virtual ones in a stationary gravitation field. The mass of these particles is a function of the intensity of gravitation field. We suppose that the particles created in the gravitation field form a part of the non-baryonic dark matter. Having the intensity of gravitation field in a galaxy we can calculate the density of dark matter created in it by the vacuum quantum fluctuation. We calculate the distribution of this dark matter in a model galaxy and show that its total mass is comparable with the visible mass of the galaxy.  相似文献   
23.
Graviton may, in principle, have a small non-zero mass. In this paper the relevant theory of the massive graviton with six polarisations is developed. The drastic impact of a non-zero mass of the graviton on cosmology is also illustrated.  相似文献   
24.
In many areas of engineering practice, applied loads are not uniformly distributed but often concentrated towards the centre of a foundation. Thus, loads are more realistically depicted as distributed as linearly varying or as parabola of revolution. Solutions for stresses in a transversely isotropic half‐space caused by concave and convex parabolic loads that act on a rectangle have not been derived. This work proposes analytical solutions for stresses in a transversely isotropic half‐space, induced by three‐dimensional, buried, linearly varying/uniform/parabolic rectangular loads. Load types include an upwardly and a downwardly linearly varying load, a uniform load, a concave and a convex parabolic load, all distributed over a rectangular area. These solutions are obtained by integrating the point load solutions in a Cartesian co‐ordinate system for a transversely isotropic half‐space. The buried depth, the dimensions of the loaded area, the type and degree of material anisotropy and the loading type for transversely isotropic half‐spaces influence the proposed solutions. An illustrative example is presented to elucidate the effect of the dimensions of the loaded area, the type and degree of rock anisotropy, and the type of loading on the vertical stress in the isotropic/transversely isotropic rocks subjected to a linearly varying/uniform/parabolic rectangular load. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
25.
This paper presents a method that incorporates a non‐associated flow rule into the limit analysis to investigate the influence of the dilatancy angle on the factor of safety for the slope stability analysis. The proposed method retain's the advantage of the upper bound method, which is simple and has no stress involvement in the calculation of the energy dissipation and the factor of safety. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
26.
We have developed model predictions for the morphological distribution of cluster galaxies as a function of the cluster-centric distance and the local galaxy density, using a semi-analytical code. This code allows us to obtain magnitudes and colours for cluster galaxies at different redshifts, and thus to study in detail the evolution of the colour–magnitude relation of specific distant clusters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
27.
Abstract— Abundances and isotopic compositions of noble gases in metal and graphite of the Bohumilitz IAB iron meteorite were measured. The abundance ratios of spallogenic components in metal reveal a 3He deficiency which is due to the diffusive loss of parent isotopes, that is, tritium (Tilles, 1963; Schultz, 1967). The diffusive loss likely has been induced by thermal heating by the Sun during cosmic‐ray exposure (~160 Ma; Lavielle et al, 1999). Thermal process such as impact‐induced partial loss may have affected the isotopic composition of spallogenic Ne. The 129Xe/131Xe ratio of cosmogenic components in the metal indicates an enhanced production of epi‐thermal neutrons. The abundance ratios of spallogenic components in the graphite reveal that it contained small amounts of metal and silicates. The isotopic composition of heavy noble gases in graphite itself was obtained from graphite treated with HF/HCl. The isotopic composition of the etched graphite shows that it contains two types of primordial Xe (i.e., Q‐Xe and El Taco Xe). The isotopic heterogeneity preserved in the Bohumilitz graphite indicates that the Bohumilitz graphite did not experience any high‐temperature event and, consequently, must have been emplaced into the metal at subsolidus temperatures. This situation is incompatible with an igneous model as well as the impact melting models for the IAB‐IIICD iron meteorites as proposed by Choi et al. (1995) and Wasson et al (1980).  相似文献   
28.
In this paper we present the kinematics of the gas and/or the stars of a sample of 20 disc galaxies. We investigate whether there is any relation between the kinematics of the gas and stars and the classical morphological type of the galaxies in the sample. We deduce that, in most of the late-type spirals we have studied, the stars and the ionized gas are moving with virtually circular velocity, except when the spectroscopic slit crosses a bar region. On the other hand, we found in the central parts of early-type disc galaxies a wider variety of different behaviour of stars and gas. We find many possible factors that complicate the classification of the kinematical properties of the galaxies by their morphological type: the presence of counter-rotations (star vs. stars or star vs. gas), misalignment between the different kinematic components present in the galaxy, the presence of a bar structure and its orientation with respect to the line of nodes of the galaxy, and interactions and mergers or external accretion processes are some of the problems we find in the study of the kinematics of a galaxy.  相似文献   
29.
We suggest that elliptical galaxies, as stellar systems in a stage of quasi-equilibrium, may have a specific entropy. We use the Sérsic law to describe the light profile. The specific entropy (the Boltzmann–Gibbs definition) is then calculated assuming that the galaxy behaves as a spherical, isotropic, one-component system. We predict a relation between the three parameters of the Sérsic law linked to the specific entropy, defining a surface in the parameter space, an ‘entropic plane’. We have analysed a sample of simulated merging elliptical galaxies (virtual) and a sample of galaxies belonging to the Coma Cluster (real). Both virtual and realgalaxies are: 1) located in their own ‘entropic plane‘ and 2) in this plane, they are located on a straight line, indicating constant entropy: another physical property A careful examination of the value of the specific entropy indicates a very small increase in the specific entropy with the generation after merging (virtual sample). Although one cannot distinguish between various generations for real galaxies, the distribution of specific entropy in this sample is very similar to that in the virtual sample. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
30.
In this article we present a method for the automated prediction of stellar atmospheric parameters from spectral indices. This method uses a genetic algorithm (GA) for the selection of relevant spectral indices and prototypical stars and predicts their properties, using the k-nearest neighbors method (KNN). We have applied the method to predict the effective temperature, surface gravity, metallicity, luminosity class and spectral class of stars from spectral indices. Our experimental results show that the feature selection performed by the genetic algorithm reduces the running time of KNN up to 92%, and the predictive accuracy error up to 35%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号