首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   738篇
  免费   43篇
  国内免费   6篇
测绘学   12篇
大气科学   65篇
地球物理   195篇
地质学   343篇
海洋学   36篇
天文学   97篇
自然地理   39篇
  2021年   9篇
  2020年   11篇
  2019年   7篇
  2018年   26篇
  2017年   16篇
  2016年   21篇
  2015年   26篇
  2014年   34篇
  2013年   52篇
  2012年   31篇
  2011年   42篇
  2010年   42篇
  2009年   47篇
  2008年   25篇
  2007年   24篇
  2006年   21篇
  2005年   21篇
  2004年   26篇
  2003年   14篇
  2002年   6篇
  2001年   17篇
  2000年   16篇
  1998年   10篇
  1997年   13篇
  1996年   12篇
  1995年   14篇
  1994年   9篇
  1993年   9篇
  1991年   9篇
  1990年   8篇
  1988年   5篇
  1987年   10篇
  1986年   5篇
  1985年   6篇
  1983年   8篇
  1982年   7篇
  1981年   6篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   6篇
  1975年   4篇
  1974年   5篇
  1925年   4篇
  1922年   4篇
  1914年   7篇
  1913年   4篇
  1912年   4篇
  1911年   4篇
  1910年   5篇
排序方式: 共有787条查询结果,搜索用时 31 毫秒
121.
An ichthyoplankton survey (18 stations in seven sampling sectors) was conducted in Narragansett Bay in 1990 to provide information on abundance, distribution, and seasonal occurrence of eggs and larvae of estuarine fishes, including seasonal migrants. An additional goal was to examine changes in species composition, abundance, and distribution occurring since the last baywide survey in 1972–73. The taxonomic composition of eggs and larvae in 1990 (41 species in 25 families from 684 plankton samples) and in 1972–73 (43 species in 28 families from 6900 samples) was similar. Maximum abundance of fish eggs occurred in June and larvae in July, minimum abundance in September to February. Species diversity was greatest in May–July and lowest during January in both surveys. However, egg and larval densities in 1990 were considerably lower than in 1972–73. Bay anchovy, tautog, and cunner accounted for 86% of the eggs and 87% of the larvae in the bay in 1990. These three species accounted for only 55% of the eggs and 51% of the larvae in 1972–73, with menhaden accounting for another 18% of the eggs and 34% of the larvae. Searobins, scup, and butterfish eggs were common in 1973 (19%) but rare in 1990 (2%). Ichthyoplankton abundance for several of the most abundant species was significantly lower (p<0.05) in the Providence River, upper bay, and Greenwich Bay in 1990 than in 1972–73. Density of fish eggs and larvae in the lower portions of the bay was lower in 1990 for some species but not others. Distribution data suggested a general down-bay shift in density in 1990. *** DIRECT SUPPORT *** A01BY085 00015  相似文献   
122.
A Genetic Algorithm (GA) is described, which produces solutions to the cost optimization problem of reinforcement layout for reinforced soil slopes. These solutions incorporate different types of reinforcement within a single slope. The GA described is implemented with the aim of optimizing the cost of materials for the preliminary layout of reinforced soil embankments. The slope design method chosen is the U.K. Department of Transport HA 68/94 ‘Design Methods for the Reinforcement of Highway Slopes by Reinforced Soil and Soil Nailing Techniques’. The results confirm that there is a role for the GA in optimization of reinforced soil design. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
123.
Water quality in Singapore's coastal area was evaluated with microbial indicators, pathogenic vibrios, chemical tracers and physico-chemical parameters. Sampling sites were grouped into two clusters (coastal sites at (i) northern and (ii) southern part of Singapore). The coastal sites located at northern part of Singapore along the Johor Straits exhibited greater pollution. Principal component analysis revealed that sampling sites at Johor Straits have greater loading on carbamazepine, while turbidity poses greater influence on sampling sites at Singapore Straits. Detection of pathogenic vibrios was also more prominent at Johor Straits than the Singapore Straits. This study examined the spatial variations in Singapore's coastal water quality and provided the baseline information for health risk assessment and future pollution management.  相似文献   
124.
125.
River engineering projects are developing rapidly across the globe, drastically modifying water courses and sediment transfer. Investigation of the impact of engineering works focuses usually on short-term impacts, thus a longer-term perspective is still missing on the effects that such projects have. The ‘Jura Water Corrections’ – the largest river engineering project ever undertaken in Switzerland – radically modified the hydrological system of Lake Biel in the 19th and 20th Century. The deviation of the Aare River into Lake Biel more than 140 years ago, in 1878, thus represents an ideal case study to investigate the long-term sedimentological impacts of such large-scale river rerouting. Sediment cores, along with new high-resolution bathymetric and seismic reflection datasets were acquired in Lake Biel to document the consequences of the Jura Water Corrections on the sedimentation history of Lake Biel. Numerous subaquatic mass transport structures were detected on all of the slopes of the lake. Notably, a relatively large mass transport complex (0·86 km2) was observed on the eastern shore, along the path of the Aare River intrusion. The large amount of sediment delivered by the Aare River since its deviation into the lake likely caused sediment overloading resulting in subaquatic mass transport. Alternatively, the dumping since 1963 in a subaquatic landfill of material excavated during the second phase of river engineering, when the channels flowing into and out of Lake Biel were widened and deepened, might have triggered the largest mass transport, dated to 1964 or 1965. Additional potential triggers include two nearby small earthquakes in 1964 and 1965 (MW 3·9 and 3·2, respectively). The data for this study indicate that relatively large mass transports have become recurrent in Lake Biel following the deviation of the Aare River, thus modifying hazard frequency for the neighbouring communities and infrastructure.  相似文献   
126.
Estimating the extent and age of the last glacial maxima as well as the chronology of glacial recessions in various environmental contexts is key to source-to-sink studies and paleoclimate reconstructions. The Argentera-Mercantour massif is located at the transition between the Alps and the Mediterranean Sea, therefore, its deglaciation chronology can be compared to the sediment budget of the Var River basin. Based on 13 new cosmic-ray exposure (CRE) beryllium-10 (10Be) datings performed on moraines and polished crystalline bedrocks and 22 reassessed 10Be CRE ages from similar altitude nearby steep basement surfaces, and from a lake sediment core, we can constrain the deglaciation chronology of the Argentera-Mercantour massif. These data allow for the first time to fully reconstruct the deglaciation history at the scale of the entire massif in agreement with a major glacier recession at c. 15 ka, at the onset of Bølling transition between the Oldest and Older Dryas. Main deglaciation of the upper slopes [2700–2800 m above sea level (a.s.l.)] occurred after the Last Glacial Maximum (LGM) at 20.8–18.6 ka, followed by the main deglaciation of the lower slopes (2300 m a.s.l.) at 15.3–14.2 ka. Finally, the flat polished surfaces above 2600 m a.s.l. and the zones confined within narrow lateral valleys were likely affected by progressive ice melting of remaining debris covered glaciers and moraine erosion following the Younger Dryas re-advance stage between 12 and 8–9 ka. At lower elevations, the Vens Lake located at 2300 m a.s.l., allows evidence of the onset of lake sedimentation at c. 14 ka and a transition towards a vegetated environment that mainly occurred before 8 ka. Moraine final stabilization at 5 ka might reflect denudation acceleration during the Holocene humid phase. This contribution reveals a glacier–climate relationship more sensitive to warming phases in the southern Alps highlighted by a major decrease of glaciers after c. 15 ka. This major deglaciation is correlated with a 2.5-fold decrease of sediment discharge of rivers into the Mediterranean Sea. © 2019 John Wiley & Sons, Ltd.  相似文献   
127.
Sediment supply (Qs) is often overlooked in modelling studies of landscape evolution, despite sediment playing a key role in the physical processes that drive erosion and sedimentation in river channels. Here, we show the direct impact of the supply of coarse-grained, hard sediment on the geometry of bedrock channels from the Rangitikei River, New Zealand. Channels receiving a coarse bedload sediment supply are systematically (up to an order of magnitude) wider than channels with no bedload sediment input for a given discharge. We also present physical model experiments of a bedrock river channel with a fixed water discharge (1.5 l min−1) under different Qs (between 0 and 20 g l−1) that allow the quantification of the role of sediment in setting the width and slope of channels and the distribution of shear stress within channels. The addition of bedload sediment increases the width, slope and width-to-depth ratio of the channels, and increasing sediment loads promote emerging complexity in channel morphology and shear stress distributions. Channels with low Qs are characterized by simple in-channel morphologies with a uniform distribution of shear stress within the channel while channels with high Qs are characterized by dynamic channels with multiple active threads and a non-uniform distribution of shear stress. We compare bedrock channel geometries from the Rangitikei and the experiments to alluvial channels and demonstrate that the behaviour is similar, with a transition from single-thread and uniform channels to multiple threads occurring when bedload sediment is present. In the experimental bedrock channels, this threshold Qs is when the input sediment supply exceeds the transport capacity of the channel. Caution is required when using the channel geometry to reconstruct past environmental conditions or to invert for tectonic uplift rates, because multiple configurations of channel geometry can exist for a given discharge, solely due to input Qs. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
128.
129.
130.
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow‐through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream‐aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow‐through streams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号