首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   5篇
  国内免费   2篇
大气科学   7篇
地球物理   39篇
地质学   48篇
海洋学   46篇
天文学   21篇
自然地理   7篇
  2021年   4篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   3篇
  2011年   4篇
  2010年   12篇
  2009年   14篇
  2008年   6篇
  2007年   9篇
  2006年   10篇
  2005年   7篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   3篇
  1994年   7篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有168条查询结果,搜索用时 515 毫秒
111.
Abstract The Hakkoda‐Towada caldera cluster (HTCC) is a typical Late Cenozoic caldera cluster located in the northern part of the Northeast Japan Arc. The HTCC consists of five caldera volcanoes, active between 3.5 Ma and present time. The felsic magmas can be classified into high‐K (HK‐) type and medium‐ to low‐K (MLK‐) type based on their whole‐rock chemistry. The HK‐type magmas are characterized by higher K2O and Rb contents and higher 87Sr/86Sr ratios than MLK‐type magmas. Both magmas cannot be derived from fractional crystallization of any basaltic magma in the HTCC. Assimilation‐fractional crystallization model calculations show that crustal assimilation is necessary for producing the felsic magmas, and HK‐type magmas are produced by higher degree of crustal assimilation with fractional crystallization than MLK‐type magmas. Although MLK‐type magmas were erupted throughout HTCC activity, HK‐type magmas were erupted only during the initial stage. The temporal variations of magma types suggest the large contribution of crustal components in the initial stage. A major volcanic hiatus of 3 my before the HTCC activity suggests a relatively cold crust in the initial stage. The cold crust probably promoted crustal assimilation and fractional crystallization, and caused the initial generation of HK‐type magmas. Subsequently, the repeated supply of mantle‐derived magmas raised temperature in the crust and formed relatively stable magma pathways. Such a later system produced MLK‐type magmas with lesser crustal components. The MLK‐type magmas are common and HK‐type magmas are exceptional during the Pliocene–Quaternary volcanism in the Northeast Japan Arc. This fact suggests that exceptional conditions are necessary for the production of HK‐type magmas. A relatively cold crust caused by a long volcanic hiatus (several million years) is considered as one of the probable conditions. Intensive crustal assimilation and fractional crystallization promoted by the cold crust may be necessary for the generation of highly evolved HK‐type felsic magmas.  相似文献   
112.
The Dexing deposit is located in a NE‐trending magmatic belt along the southeastern margin of the Yangtze Craton. It is the largest porphyry copper deposit in China, consisting of three porphyry copper orebodies of Zhushahong, Tongchang and Fujiawu from northwest to southeast. It contains 1168 Mt of ores with 0.5% Cu and 0.01% Mo. The Dexing deposit is hosted by Middle Jurassic granodiorite porphyries and pelitic schist of Proterozoic age. The Tongchang granodiorite porphyry has a medium K cal‐alkaline series, with medium K2O content (1.94–2.07 wt%), and low K2O/(Na2O + K2O) (0.33–0.84) ratios. They have high large‐ion lithophile elements, high light rare‐earth elements, and low high‐field‐strength elements. The hydrothermal alteration at Tongchang is divided into four alteration mineral assemblages and related vein systems. They are early K‐feldspar alteration and A vein; transitional (chlorite + illite) alteration and B vein; late phyllic (quartz + muscovite) alteration and D vein; and latest carbonate, sulfate and oxide alteration and hematite veins. Primary fluid inclusions in quartz from phyllic alteration assemblage include liquid‐rich (type 1), vapor‐rich (type 2) and halite‐bearing ones (type 3). These provide trapping pressures of 20–400 ´ 105 Pa of fluids responsible for the formation of D veins. Igneous biotite from least altered granochiorite porphyry and hydrothermal muscovite in mineralized granodiorite porphyry possess δ18O and δD values of 4.6‰ and ?87‰ for biotite and 7.1–8.9‰, ?71 to ?73‰ for muscovite. Stable isotopic composition of the hydrothermal water suggests a magmatic origin. The carbon and oxygen isotope for hydrothermal calcite are ?4.8 to ?6.2‰ and 6.8–18.8‰, respectively. The δ34S of pyrite in quartz vein ranges from ?0.1 to 3‰, whereas δ34S for chalcopyrite in calcite veins ranges from 4 to 5‰. These are similar to the results of previous studies, and suggest a magmatic origin for sulfur. Results from alteration assemblages and vein system observation, as well as geochemical, fluid inclusion, stable isotope studies indicate that the involvement of hydrothermal fluids exsolved from a crystallizing melt are responsible for the formation of Tongchang porphyry Cu‐Mo orebodies in Dexing porphyry deposit.  相似文献   
113.
We carried out a spectral observation of traces of the comet impacts within the wavelength region between 440 and 830 nm. Three dark spots of fragments K, E, and G impact sites were investigated. The spectrum of these dark spots shows no special emission or absorption lines in this observation. The global spectral feature resembles that of Jovian zone cloud rather than that of the belt. While the continuum reflectivity of the dark spots of K and E sites is less than 0.42 at 600 nm, that of the G site is 0.33. These values should be interpreted as an upper limits because of the influence of atmospheric seeing. The equivalent width of the absorption lines at the K sites is also derived. Both the continuum reflectivity and the equivalent width of the dark spots are smaller than those of any Jovian zonal cloud. This indicates that the dark spots are low-albedo cloud formed at the upper atmosphere.  相似文献   
114.
—?The stress state at the Hijiori hot dry rock site was estimated based on the inversion from focal mechanisms of microseismic events induced during hydraulic injection experiments. The best fit stress model obtained by inverting 58 focal mechanisms of seismic events simultaneously indicates that the maximum principal stress σ1 is vertical, while the minimum principal stress σ3 is horizontal and trends north-south. The average misfit between the stress model and all the data is 6.8°. The inversion results show that the average misfit is small enough to satisfy the assumption of homogeneity in the focal mechanism data and that the 95% confidence regions of σ1 and σ3 are well constrained, i.e., they do not overlap, suggesting that the inversion results are acceptable. The stress estimates obtained by the focal mechanism inversion essentially agree with other stress estimates previously obtained. It is therefore concluded that the focal mechanism inversion method provides a useful tool for estimating the stress state. The hypocentral distributions of microseismic events associated with the hydraulic fracturing experiments are distributed around the plane that spreads to almost east–west from the injection wells and declines to the north at a high angle. The vertical orientation and east–west strike of the seismic events are essentially coplanar with the caldera ring-fault structure in the southern portion of the Hijiori Caldera. This indicates that tensile fractures of intact rock were not being created, but pre-existing fractures were being re-opened and developed in the direction of the maximum horizontal principal stress, although microseismic events were caused by shear failures.  相似文献   
115.
Measurements on plutonium diffusivity in water-saturated compacted bentonite were carried out. Representative specimens of sodium bentonite were taken from the Tsukinuno and Kuroishi mines situated in northeast Japan. Tsukinuno bentonite was divided into three types: raw type, purified Na-type, and H-type which was prepared by treating Na-type bentonite with hydrochloric acid. Kuroishi bentonite contained chlorite as impurity. H-type bentonite was used as reference for the convenience of profile measurement in bentonite, since plutonium diffusivity in H-type bentonite was considered to be larger than that in Na-type bentonite because of low pH and low swelling pressure of H-type bentonite.

Sampled bentonite was compacted into pellets of 20 mm in diameter and 20 mm in height. Bulk densities of these specimens were 1200–1800 kg/m3 for purified Na-type and H-type bentonite and 1600 kg/m3 for raw type bentonite.

Plutonium profiles obtained in H-type bentonite can be explained by diffusion equation with constant concentration source. Diffusivity ranges from 10-13 to 1012 m2/s for H-type and Kuroishi impure sodium bentonite. Diffusivity in both raw type and purified Tsukinuno bentonite was was estimated to less than 10-14 M2/s. Diffusivity in H-type bentonite showed a tendency to decrease with increasing density. Influence of in bentonite was also studied. Quartz content up to 50% or hematite content up to 1% did not influence diffusivity significantly in H-type bentonite.

The chemical species of plutonium in pore water of Na-type and H-type were estimated Pu(OH)3-; and PuO2- , respectively.  相似文献   

116.
The new scale Mt of tsunami magnitude is a reliable measure of the seismic moment of a tsunamigenic earthquake as well as the overall strength of a tsunami source. This Mt scale was originally defined by Abe (1979) in terms of maximum tsunami amplitudes at large distances from the source. A method is developed whereby it is possible to determine Mt at small distances on the basis of the regional tsunami data obtained at 30 tide stations in Japan. The relation between log H, maximum amplitude (m) and log Δ, a distance of not less than 100 km away from the source (km) is found to be linear, with a slope close to 1.0. Using three tsunamigenic earthquakes with known moment magnitudes Mw, for calibration, the relation, Mt = log H + log Δ + D, is obtained, where D is 5.80 for single-amplitude (crest or trough) data and 5.55 for double-amplitude (crest-to-trough) data. Using a number of tsunami amplitude data, Mt is assigned to 80 tsunamigenic earthquakes that occurred in the northwestern Pacific, mostly in Japan, during the period from 1894 to 1981. The Mt values are found to be essentially equivalent to Mw for 25 events with known Mw. The 1952 Kamchatka earthquake has the largest Mt, 9.0. Of all the 80 events listed, at least seven unusual earthquakes which generated disproportionately-large tsunamis for their surface-wave magnitude Ms are identified from the relation. From the viewpoint of tsunami hazard reduction, the present results provide a quantitative basis for predicting maximum tsunami amplitudes at a particular site.  相似文献   
117.
As a rule, the change in mechanical properties of rock by specimen size is regarded as scale effect. A rock mass basically consists of two components: intact rock and discontinuities, each of which has different scale effects. In order to numerically analyze the behavior of discontinuous rock masses, sufficient mechanical properties must be determined not only for discontinuities but also for intact rock taking into consideration the different scale effects. This paper reviews the scale effect on strength and deformation characteristics of intact rock, and also discusses the possibility of using standard specimens to estimate strength and deformation characteristics of actual-scale rock. Finally, we propose an adequate method for the practical determination of mechanical design parameters based on the above discussions.  相似文献   
118.
119.
120.
Chlorophyll a concentrations (chla) and the absorption coefficients of total particulate matter [a p()], phytoplankton [a ph()], detritus [a d()], and colored dissolved organic matter: CDOM [a CDOM()] were measured in seawater samples collected in the subarctic North Pacific and the southern Bering Sea during the summer of 1997. We examined the specific spectral properties of absorption for each material, and compared the light fields in the Western subarctic Gyre (area WSG) with those in the Alaskan Gyre (area AG), and the southern Bering Sea (area SB). In the area WSG, the irradiance in the surface layer decreased markedly, indicating high absorption. In the area AG, the radiant energy penetrated deeply, and the chl a and absorption values were low throughout the water column. In the area SB, light absorption was high in the surface layer on the shelf edge and decreased with increasing depth; on the other hand, light absorption was low in the surface layer in the shelf area and increased with increasing depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号