首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   26篇
  国内免费   4篇
测绘学   10篇
大气科学   38篇
地球物理   141篇
地质学   153篇
海洋学   46篇
天文学   37篇
综合类   1篇
自然地理   39篇
  2021年   11篇
  2020年   10篇
  2019年   11篇
  2018年   13篇
  2017年   16篇
  2016年   12篇
  2015年   16篇
  2014年   15篇
  2013年   18篇
  2012年   16篇
  2011年   28篇
  2010年   21篇
  2009年   23篇
  2008年   24篇
  2007年   15篇
  2006年   20篇
  2005年   10篇
  2004年   11篇
  2003年   14篇
  2002年   6篇
  2001年   6篇
  2000年   6篇
  1999年   8篇
  1998年   6篇
  1997年   10篇
  1996年   7篇
  1995年   5篇
  1994年   9篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   10篇
  1989年   5篇
  1988年   3篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1978年   3篇
  1977年   4篇
  1974年   3篇
  1972年   3篇
  1966年   2篇
  1935年   2篇
  1923年   2篇
  1922年   2篇
  1915年   2篇
排序方式: 共有465条查询结果,搜索用时 701 毫秒
61.
Springs are the point of origin for most headwater streams and are important regulators of their chemical composition. We analysed solute concentrations of water emerging from 57 springs within the 3 km2 Fool Creek catchment at the Fraser Experimental Forest and considered sources of spatial variation among them and their influence on the chemical composition of downstream water. On average, calcium and acid neutralizing capacity (bicarbonate-ANC) comprised 50 and 90% of the cation and anion charge respectively, in both spring and stream water. Variation in inorganic chemical composition among springs reflected distinct groundwater sources and catchment geology. Springs emerging through glacial deposits in the upper portion of the catchment were the most dilute and similar to snowmelt, whereas lower elevation springs were more concentrated in cations and ANC. Water emerging from a handful of springs in a geologically faulted portion of the catchment were more concentrated than all others and had a predominant effect on downstream ion concentrations. Chemical similarity indicated that these springs were linked along surface and subsurface flowpaths. This survey shows that springwater chemistry is influenced at nested spatial scales including broad geologic conditions, elevational and spatial attributes and isolated local features. Our results highlight the role of overlapping factors on solute export from headwater catchments.  相似文献   
62.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   
63.
64.
A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate \(\epsilon \), the length scale of energy-containing eddies \(\mathcal {L}\), a turbulence anisotropy parameter \(\varGamma \), the Richardson number Ri, and the normalized rate of destruction of temperature variance \(\eta _\theta \equiv \epsilon _\theta /\epsilon \). Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin–Obukhov similarity theory, where z is the height above the Earth’s surface, and L is the Obukhov length corresponding to \(\{Ri,\eta _\theta \}\). Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale \(\sim \) 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.  相似文献   
65.
Measurement of barometric efficiency (BE) from open monitoring wells or loading efficiency (LE) from formation pore pressures provides valuable information about the hydraulic properties and confinement of a formation. Drained compressibility (α) can be calculated from LE (or BE) in confined and semi-confined formations and used to calculate specific storage (S s). S s and α are important for predicting the effects of groundwater extraction and therefore for sustainable extraction management. However, in low hydraulic conductivity (K) formations or large diameter monitoring wells, time lags caused by well storage may be so long that BE cannot be properly assessed in open monitoring wells in confined or unconfined settings. This study demonstrates the use of packers to reduce monitoring-well time lags and enable reliable assessments of LE. In one example from a confined, high-K formation, estimates of BE in the open monitoring well were in good agreement with shut-in LE estimates. In a second example, from a low-K confining clay layer, BE could not be adequately assessed in the open monitoring well due to time lag. Sealing the monitoring well with a packer reduced the time lag sufficiently that a reliable assessment of LE could be made from a 24-day monitoring period. The shut-in response confirmed confined conditions at the well screen and provided confidence in the assessment of hydraulic parameters. A short (time-lag-dependent) period of high-frequency shut-in monitoring can therefore enhance understanding of hydrogeological systems and potentially provide hydraulic parameters to improve conceptual/numerical groundwater models.  相似文献   
66.
Naegleria fowleri is a thermophilic free-living amoeba found worldwide in soils and warm freshwater. It is the causative agent of primary amebic meningoencephalitis, a nearly always fatal disease afflicting mainly children and young adults. Humans are exposed to the organism via swimming, bathing, or other recreational activity during which water is forcefully inhaled into the upper nasal passages. Although many studies have looked at the occurrence of N. fowleri in surface waters, limited information is available regarding its occurrence in groundwater and geothermally heated natural waters such as hot springs. This paper reviews the current literature related to the occurrence of N. fowleri in these waters and the methods employed for its detection. Case reports of potential groundwater exposures are also included. Despite increased interest in N. fowleri in recent years due to well-publicized cases linked to drinking water, many questions still remain unanswered. For instance, why the organism persists in some water sources and not in others is not well understood. The role of biofilms in groundwater wells and plumbing in individual buildings, and the potential for warming due to climate change to expand the occurrence of the organism into new regions, are still unclear. Additional research is needed to address these questions in order to better understand the ecology of N. fowleri and the conditions that result in greater risks to bathers.  相似文献   
67.
Seagrasses are submerged marine plants that are anchored to the substrate and are therefore limited to assimilating nutrients from the surrounding water column or sediment, or by translocating nutrients from adjacent shoots through the belowground rhizome. As a result, seagrasses have been used as reliable ecosystem indicators of surrounding nutrient conditions. The Chandeleur Islands are a chain of barrier islands in the northern Gulf of Mexico that support the only marine seagrass beds in Louisiana, USA, and are the sole location of the seagrass Thalassia testudinum across nearly 1000 km of the coastline from west Florida to central Texas. Over the past 150 years, the land area of the Chandeleur Islands has decreased by over half, resulting in a decline of seagrass cover. The goals of this study were to characterize the status of a climax seagrass species at the Chandeleur Islands, T. testudinum, in terms of leaf nutrient (nitrogen [N] and phosphorus [P]) changes over time, from 1998 to 2015, and to assess potential drivers of leaf nutrient content. Thalassia testudinum leaf nutrients displayed considerable interannual variability in N and P content and molar ratios, which broadly mimicked patterns in annual average dissolved nutrient concentrations in the lower Mississippi River. Hydrological modeling demonstrated the potential for multiple scenarios that would deliver Mississippi River water, and thus nutrients, to T. testudinum at the Chandeleur Islands. Although coastal eutrophication is generally accepted as the proximate cause for seagrass loss globally, there is little evidence that nutrient input from the Mississippi River has driven the dramatic declines observed in seagrasses at the Chandeleur Islands. Rather, seagrass cover along the Chandeleur Islands appears to be strongly influenced by island geomorphological processes. Although variable over time, the often elevated nutrient levels of the climax seagrass species, T. testudinum, which are potentially driven by river-derived nutrient inputs, raises an important consideration of the potential loss of the ecosystem functions and services associated with these declining seagrass meadows.  相似文献   
68.
Potential, potential field and potential‐field gradient data are supplemental to each other for resolving sources of interest in both exploration and solid Earth studies. We propose flexible high‐accuracy practical techniques to perform 3D and 2D integral transformations from potential field components to potential and from potential‐field gradient components to potential field components in the space domain using cubic B‐splines. The spline techniques are applicable to either uniform or non‐uniform rectangular grids for the 3D case, and applicable to either regular or irregular grids for the 2D case. The spline‐based indefinite integrations can be computed at any point in the computational domain. In our synthetic 3D gravity and magnetic transformation examples, we show that the spline techniques are substantially more accurate than the Fourier transform techniques, and demonstrate that harmonicity is confirmed substantially better for the spline method than the Fourier transform method and that spline‐based integration and differentiation are invertible. The cost of the increase in accuracy is an increase in computing time. Our real data examples of 3D transformations show that the spline‐based results agree substantially better or better with the observed data than do the Fourier‐based results. The spline techniques would therefore be very useful for data quality control through comparisons of the computed and observed components. If certain desired components of the potential field or gradient data are not measured, they can be obtained using the spline‐based transformations as alternatives to the Fourier transform techniques.  相似文献   
69.
In situ tensile fracture toughness of surficial cohesive marine sediments   总被引:1,自引:1,他引:0  
This study reports the first in situ measurements of tensile fracture toughness, K IC, of soft, surficial, cohesive marine sediments. A newly developed probe continuously measures the stress required to cause tensile failure in sediments to depths of up to 1 m. Probe measurements are in agreement with standard laboratory methods of K IC measurements in both potter’s clay and natural sediments. The data comprise in situ depth profiles from three field sites in Nova Scotia, Canada. Measured K IC at two muddy sites (median grain size of 23–50 μm) range from near zero at the sediment surface to >1,800 Pa m1/2 at 0.2 m depth. These profiles also appear to identify the bioturbated/mixed depth. K IC for a sandy site (>90% sand) is an order of magnitude lower than for the muddy sediments, and reflects the lack of cohesion/adhesion. A comparison of K IC, median grain size, and porosity in muddy sediments indicates that consolidation increases fracture strength, whereas inclusion of sand causes weakening; thus, sand-bearing layers can be easily identified in K IC profiles. K IC and vane-measured shear strength correlate strongly, which suggests that the vane measurements should perhaps be interpreted as shear fracture toughness, rather than shear strength. Comparison of in situ probe-measured values with K IC of soils and gelatin shows that sediments have a K IC range intermediate between denser compacted soils and softer, elastic gelatin.  相似文献   
70.
Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as ‘monsoon’ or ‘cloudburst’ rains. Velocities of the moving debris range from about 5 km/h to about 90 km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel. After the channel is blocked, subsequent debris flows cut a new channel upstream from the blockage that results in the deposition of new debris-flow deposits on the lower part of the fan. Shifting the location of debris flows on the Rattlesnake Creek fan tends to prevent trees from becoming mature. Dense growths of conifer seedlings sprout in the spring on the late summer debris flow deposits. This repeated process results in stands of even-aged trees whose age records the age of the debris flows.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号