首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   930篇
  免费   53篇
  国内免费   8篇
测绘学   18篇
大气科学   73篇
地球物理   198篇
地质学   373篇
海洋学   89篇
天文学   171篇
综合类   4篇
自然地理   65篇
  2023年   5篇
  2022年   6篇
  2021年   16篇
  2020年   20篇
  2019年   14篇
  2018年   33篇
  2017年   30篇
  2016年   41篇
  2015年   30篇
  2014年   42篇
  2013年   56篇
  2012年   52篇
  2011年   60篇
  2010年   41篇
  2009年   64篇
  2008年   54篇
  2007年   52篇
  2006年   51篇
  2005年   42篇
  2004年   24篇
  2003年   34篇
  2002年   36篇
  2001年   27篇
  2000年   21篇
  1999年   15篇
  1998年   14篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   4篇
  1993年   9篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1967年   1篇
排序方式: 共有991条查询结果,搜索用时 15 毫秒
971.
This paper provides an overview of the PACS photometer flux calibration concept, in particular for the principal observation mode, the scan map. The absolute flux calibration is tied to the photospheric models of five fiducial stellar standards (α Boo, α Cet, α Tau, β And, γ Dra). The data processing steps to arrive at a consistent and homogeneous calibration are outlined. In the current state the relative photometric accuracy is ~2 % in all bands. Starting from the present calibration status, the characterization and correction for instrumental effects affecting the relative calibration accuracy is described and an outlook for the final achievable calibration numbers is given. After including all the correction for the instrumental effects, the relative photometric calibration accuracy (repeatability) will be as good as 0.5 % in the blue and green band and 2 % in the red band. This excellent calibration starts to reveal possible inconsistencies between the models of the K-type and the M-type stellar calibrators. The absolute calibration accuracy is therefore mainly limited by the 5 % uncertainty of the celestial standard models in all three bands. The PACS bolometer response was extremely stable over the entire Herschel mission and a single, time-independent response calibration file is sufficient for the processing and calibration of the science observations. The dedicated measurements of the internal calibration sources were needed only to characterize secondary effects. No aging effects of the bolometer or the filters have been found. Also, we found no signs of filter leaks. The PACS photometric system is very well characterized with a constant energy spectrum νF ν = λF λ = const as a reference. Colour corrections for a wide range of sources SEDs are determined and tabulated.  相似文献   
972.
973.
Flow over Hills: A Large-Eddy Simulation of the Bolund Case   总被引:6,自引:6,他引:0  
Simulation of local atmospheric flows around complex topography is important for several applications in wind energy (short-term wind forecasting and turbine siting and control), local weather prediction in mountainous regions and avalanche risk assessment. However, atmospheric simulation around steep mountain topography remains challenging, and a number of different approaches are used to represent such topography in numerical models. The immersed boundary method (IBM) is particularly well-suited for efficient and numerically stable simulation of flow around steep terrain. It uses a homogenous grid and permits a fast meshing of the topography. Here, we use the IBM in conjunction with a large-eddy simulation (LES) and test it against two unique datasets. In the first comparison, the LES is used to reproduce experimental results from a wind-tunnel study of a smooth three-dimensional hill. In the second comparison, we simulate the wind field around the Bolund Hill, Denmark, and make direct comparisons with field measurements. Both cases show good agreement between the simulation results and the experimental data, with the largest disagreement observed near the surface. The source of error is investigated by performing additional simulations with a variety of spatial resolutions and surface roughness properties.  相似文献   
974.
Rockfalls that trigger scree‐laden snow avalanches are common in mountain ranges, but the resulting avalanche development and its role in understanding the sedimentology of scree slopes are rarely described in detail. On Riepenwand (2774 m above sea‐level, Kalkkögel range, Alps), on 6 May 2011 a 5800 m3 rockfall of dolostone detached from the flank of a gorge in the upper part of the mountain. After first collapsing into the gorge, the fragmented rock mass fell down freely for 150 m onto a talus covered by coarse‐granular snow. Rockfall impact triggered a medium‐scale avalanche that developed: (i) a lower layer A of entrained, pure snow; and (ii) an upper layer B of clay‐sized to boulder‐sized fragments mixed with snow. This ‘two‐layer scree/snow avalanche’ halted in the distal slope segment of the talus. Boulders within layer B mainly came to rest in the distal part of the avalanche deposit. Fragments smaller than cobble‐size grade did not show obvious downslope segregation. With snowmelt, the rockfall fragments dispersed in layer B were concentrated to a clast‐supported veneer that was draped over the older talus surface upon slower melting of avalanche layer A. In the grain‐size fraction ≤16 mm, a mean of 5 wt% matrix (silt‐sized to clay‐sized grains) of the rockfall‐derived scree of layer B is similar to a mean matrix content of 7 wt% within stratified talus slopes of the Kalkkögel range. This similarity suggests that a major share of matrix – widespread in stratified talus – stems from rockfalls. The characteristics of the scree veneer as melt‐lag of a scree‐laden snow avalanche will be blurred with time. Fossil talus successions may contain a substantial proportion of scree carried down by snow avalanches. The formation of a distinct sedimentary facies of snow avalanche‐deposited scree is impeded by processes of redeposition and deposit modification on talus.  相似文献   
975.
Water incorporation in forsterite samples synthesized under low to medium silica-activity conditions mostly occurs via a substitutional mechanism in which a Si vacancy is compensated by four protons. Corresponding IR absorption spectra display a cluster of narrow and weakly anharmonic OH-stretching bands at wavenumbers above 3,500 cm?1. However, this diagnostic spectrum is often superimposed to one broader absorption band, rarely two, displaying pronounced temperature-dependent properties and tentatively assigned to H atoms in interstitial position (Ingrin et al. in Phys Chem Miner 40:499–510, 2013). Here, we investigate the structural and vibrational properties of selected interstitial H-bearing defects in forsterite using a first-principles modeling approach. We show that the broad bands discussed by Ingrin et al. (Phys Chem Miner 40:499–510, 2013) are most likely related to interstitial OH groups in the vacant octahedral sites alternating with the M2 sites along the c axis of the forsterite structure. The corresponding OH defects lead to the formation of fivefold coordinated Si species. Their peculiar thermal properties stem from the vibrational phase relaxation due to the anharmonic coupling of the high-energy local OH-stretching mode with a low-energy vibrational mode. This “exchange mode” corresponds to the hindered longitudinal translation of the OH group. These results suggest that at high pressure, hydrogen incorporation in forsterite is dominated by coexisting interstitial OH groups and (4H)Si defects.  相似文献   
976.
We review the oxygen isotopic compositions of minerals in chondrules and compound objects composed of a chondrule and a refractory inclusion, and bulk oxygen isotopic compositions of chondrules in unequilibrated ordinary, carbonaceous, enstatite, and Kakangari-like chondrites, focusing on data acquired using secondary ion mass-spectrometry and laser fluorination coupled with mass-spectrometry over the last decade. Most ferromagnesian chondrules from primitive (unmetamorphosed) chondrites are isotopically uniform (within 3–4‰ in Δ17O) and depleted in 16O (Δ17O>−7‰) relative to amoeboid olivine aggregates (AOAs) and most calcium–aluminum-rich inclusions (CAIs) (Δ17O<−20‰), suggesting that these classes of objects formed in isotopically distinct gaseous reservoirs, 16O-poor and 16O-rich, respectively. Chondrules uniformly enriched in 16O (Δ17O<−15‰) are exceptionally rare and have been reported only in CH chondrites. Oxygen isotopic heterogeneity in chondrules is mainly due to the presence of relict grains. These appear to consist of chondrules of earlier generations and rare refractory inclusions; with rare exceptions, the relict grains are 16O-enriched relative to chondrule phenocrysts and mesostasis. Within a chondrite group, the magnesium-rich (Type I) chondrules tend to be 16O-enriched relative to the ferrous (Type II) chondrules. Aluminum-rich chondrules in ordinary, enstatite, CR, and CV chondrites are generally 16O-enriched relative to ferromagnesian chondrules. No systematic differences in oxygen isotopic compositions have been found among these chondrule types in CB chondrites. Aluminum-rich chondrules in carbonaceous chondrites often contain relict refractory inclusions. Aluminum-rich chondrules with relict CAIs have heterogeneous oxygen isotopic compositions (Δ17O ranges from −20‰ to 0‰). Aluminum-rich chondrules without relict CAIs are isotopically uniform and have oxygen isotopic compositions similar to, or approaching, those of ferromagnesian chondrules. Phenocrysts and mesostases of the CAI-bearing chondrules show no clear evidence for 16O-enrichment compared to the CAI-free chondrules. Spinel, hibonite, and forsterite of the relict refractory inclusions largely retained their original oxygen isotopic compositions. In contrast, plagioclase and melilite of the relict CAIs experienced melting and 16O-depletion to various degrees, probably due to isotopic exchange with an 16O-poor nebular gas. Several igneous CAIs experienced isotopic exchange with an 16O-poor nebular gas during late-stage remelting in the chondrule-forming region. On a three-isotope diagram, bulk oxygen isotopic compositions of most chondrules in ordinary, enstatite, and carbonaceous chondrites plot above, along, and below the terrestrial fractionation line, respectively. Bulk oxygen isotopic compositions of chondrules in altered and/or metamorphosed chondrites show evidence for mass-dependent fractionation, reflecting either interaction with a gaseous/fluid reservoir on parent asteroids or open-system thermal metamorphism. Bulk oxygen isotopic compositions of chondrules and oxygen isotopic compositions of individual minerals in chondrules and refractory inclusions from primitive chondrites plot along a common line of slope of 1, suggesting that only two major reservoirs (gas and solids) are needed to explain the observed variations. However, there is no requirement that each had a permanently fixed isotopic composition. The absolute (207Pb–206Pb) and relative (27Al–26Mg) chronologies of CAIs and chondrules and the differences in oxygen isotopic compositions of most chondrules (16O-poor) and most refractory inclusions (16O-rich) can be interpreted in terms of isotopic self-shielding during UV photolysis of CO in the initially 16O-rich (Δ17O−25‰) parent molecular cloud or protoplanetary disk. According to these models, the UV photolysis preferentially dissociates C17O and C18O in the parent molecular cloud and in the peripheral zones of the protoplanetary disk. If this process occurs in the stability field of water ice, the released atomic 17O and 18O are incorporated into water ice, while the residual CO gas becomes enriched in 16O. During the earliest stages of evolution of the protoplanetary disk, the inner solar nebula had a solar H2O/CO ratio and was 16O-rich. During this time, AOAs and the 16O-rich CAIs and chondrules formed. Subsequently, the inner solar nebula became H2O- and 16O-depleted, because ice-rich dust particles, which were depleted in 16O, agglomerated outside the snowline (5 AU), drifted rapidly towards the Sun and evaporated. During this time, which may have lasted for 3 Myr, most chondrules and the 16O-depleted igneous CAIs formed. We infer that most chondrules formed from isotopically heterogeneous, but 16O-depleted precursors, and experienced isotopic exchange with an 16O-poor nebular gas during melting. Although the relative roles of the chondrule precursor materials and gas–melt isotopic exchange in establishing oxygen isotopic compositions of chondrules have not been quantified yet, mineralogical, chemical, and isotopic evidence indicate that Type I chondrules may have formed in chemical and isotopic equilibrium with nebular gas of variable isotopic composition. Whether these variations were spatial or temporal are not known yet.  相似文献   
977.
Recent acoustic Doppler current profiler (ADCP)-measurements in the Scheldt estuary near Antwerp, Belgium, revealed anomalous, i.e. anti-clockwise circulations in a left bend during the major part of the flood period; these circulations were established shortly after the turn of the tide. During ebb, anti-clockwise circulations persisted, as predicted by classical theory. These data were analysed with a 3D and a 1DV-model. The 3D simulations reveal that the anomalous circulations are found when salinity is included in the computations—without salinity “normal” circulations were found. From analytical and 1DV simulations, it is concluded that a longitudinal salinity gradient ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-0em} {\partial x}$ may induce a near-bed maximum in flow velocity reversing the direction of the secondary currents. The 1DV-model was then used to assess the contribution of various processes one by one. It was found that because of a reduction in vertical mixing, the vertical velocity profile is not at equilibrium during the first phase of accelerating tide, further enhancing the effects of ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-0em} {\partial x}$ . A small vertical salinity gradient ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial z}}} \right. \kern-0em} {\partial z}$ appeared to have a very large effect as the crosscurrents of the secondary circulations induced by ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-0em} {\partial x}$ became an order of larger magnitude. However, at the site under consideration, the effects of transverse salinity gradients, generated by differential advection in the river bend, were dominant: adverse directions of the secondary circulations were found even when the vertical velocity profile became more regular with a more or less logarithmic shape, i.e. when the effects of ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-0em} {\partial x}$ and ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial z}}} \right. \kern-0em} {\partial z}$ did not play a dominant role anymore. It is argued that data on the secondary velocity structure, which can be measured easily owing to today’s developments in ADCP equipment, may serve as an indicator for the accuracy at which the salinity field is computed with 3D numerical models. Moreover, the large effect of the salinity structure on the velocity field must have a large impact on the morphological development of estuaries, which should therefore be accounted for in morphological modelling studies.  相似文献   
978.
Mitochondrial DNA (mtDNA) is a single, usually non‐recombining locus, and often uniparentally inherited. Therefore, its ability to reveal recent gene flow among populations is usually questioned. In this study, the genetic population structure of 16 populations of Tridacna crocea (n = 366) from the Indo‐Malay Archipelago (IMA) was examined with 10 microsatellite markers and compared to previous studies using mtDNA, in order to test if the revealed population structure was congruent between the two marker systems. The results showed that the genetic population structure revealed by the two marker systems was mostly congruent, with a high correlation between cytochrome c oxidase subunit I (COI) and microsatellites. The studied populations could be divided by both marker systems as follows: (i) Eastern Indian Ocean, (ii) Central IMA, and (iii) Western Pacific. Populations in the Central IMA showed high gene flow. However, populations in the Java Sea (Karimunjava, Pulau Seribu) were grouped into a separate cluster by mtDNA analysis, while this grouping was not detected by microsatellites. It was also noteworthy that there is obvious heterozygosity deficiency in most of the populations, which may be caused by null alleles, inbreeding or population expansion. Overall, these results indicate that the mitochondrial COI gene is applicable for population genetic analysis and precise recovery of connectivity patterns of giant clams. Therefore, the combination of mtDNA and nuclear DNA markers can lead to a more complete understanding of population genetics. Moreover, this study is expected to facilitate fully displaying the population genetic structure of giant clams combining with other researchers' results.  相似文献   
979.
Interactions between two identical monochromatic wave trains with a relative separation angle of 24? were experimentally investigated in a well-designed ‘X' configuration.Wave trains with different amplitudes and frequencies were generated.The results demonstrated that the interaction was strongly dependent on both wave amplitude and frequency.For nonbreaking and lower-frequency cases,the wave trains can approximately reestablish their initial state following the interaction.However,for larger waves,the interaction was enhanced,distorting the surfaces significantly-the wave trains were no longer two-dimensional after the encounter.During the interaction process,there was an obvious increase in wave height,reaching a maximum amplification in the middle of the interaction region that was approximately 1.55 times the initial height.Furthermore,the images captured by high-speed cameras illustrated that two wave trains entered the interaction region at the same time and then merged during the interaction process,resulting in an increase in wave amplitude.The combined wave crest was initially composed of two straight segments with a relative angle of 24? and gradually morphed into a single segment as is evident in the plan view.The wave then broke in the downstream,still within the interaction region,exhibiting a crescent pattern along the crest.  相似文献   
980.
 Mafic and ultramafic rocks sampled in the Garrett transform fault at 13°28′S on the East Pacific Rise (EPR) provide insight on magmatic processes occurring under a fast-spreading ridge system. Serpentinized harzburgite from Garrett have modal, mineral and bulk chemical compositions consistent with being mantle residue of a high degree of partial melting. Along with other EPR localities (Terevaka transform fault and Hess Deep), these harzburgites are among the most residual and depleted in magmatophile elements of the entire mid-ocean ridge system. Geothermometric calculations using olivine-spinel pairs indicate a mean temperature of 759 ± 25 °C for Garrett residual harzburgite similar to the average of 755 °C for tectonite peridotites from slow-spreading ridges. Results of this study show that mid-ocean ridge peridotites are subject to both fractional melting and metasomatic processes. Evidence for mantle metasomatism is ubiquitous in harzburgite and is likely widespread in the entire Garrett peridotite massif. Magma-harzburgite interactions are very well preserved as pyroxenite lenses, plagioclase dunite pockets or dunitic wall rock to intrusive gabbros. Abundant gabbroic rocks are found as intrusive pockets and dikes in harzburgite and have been injected in the following sequence: olivine-gabbro, gabbro, gabbronorite, and ferrogabbro. The wide variety of magmas that crystallized into gabbros contrast sharply with present-day intratransform basalts, which have a highly primitive composition. Ferrogabbro dikes have been intruded at the ridge-transform intersection and as they represent the last event of a succession of gabbros intrusive into the peridotite, they likely constrain the origin of the entire peridotite massif to the same location. In peridotite massifs from Pacific transform faults (Garrett and Terevaka), primitive to fractionated basaltic magmas have flowed and crystallized variable amounts of dunite (±plagioclase) and minor pyroxenite, followed by a succession of cumulate gabbroic dikes which have extensively intruded and modified the host harzburgitic rocks. The lithosphere and style of magmatic activity within a fast-slipping transform fault (outcrops of ultramafic massif, discontinuous gabbro pockets intrusive in peridotite, magnesian and phyric basalts) are more analogous to slow-spreading Mid-Atlantic Ridge type than the East Pacific Rise. Received: 13 October 1997 / Accepted: 5 February 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号