首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41214篇
  免费   848篇
  国内免费   267篇
测绘学   808篇
大气科学   2782篇
地球物理   8222篇
地质学   14880篇
海洋学   3765篇
天文学   9105篇
综合类   98篇
自然地理   2669篇
  2022年   261篇
  2021年   483篇
  2020年   537篇
  2019年   624篇
  2018年   1065篇
  2017年   1063篇
  2016年   1157篇
  2015年   656篇
  2014年   1110篇
  2013年   2007篇
  2012年   1312篇
  2011年   1785篇
  2010年   1565篇
  2009年   1933篇
  2008年   1763篇
  2007年   1832篇
  2006年   1676篇
  2005年   1171篇
  2004年   1181篇
  2003年   1203篇
  2002年   1076篇
  2001年   934篇
  2000年   850篇
  1999年   771篇
  1998年   764篇
  1997年   757篇
  1996年   624篇
  1995年   596篇
  1994年   533篇
  1993年   475篇
  1992年   430篇
  1991年   444篇
  1990年   459篇
  1989年   412篇
  1988年   393篇
  1987年   424篇
  1986年   436篇
  1985年   534篇
  1984年   569篇
  1983年   558篇
  1982年   518篇
  1981年   473篇
  1980年   444篇
  1979年   417篇
  1978年   382篇
  1977年   390篇
  1976年   347篇
  1975年   355篇
  1974年   344篇
  1973年   372篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
We have mapped three star-forming regions (G265.14+1.45, G269.16?1.14, G291.27?0.71) in the CS(3–2) and C34S(2–1) lines using the 15 m SEST telescope (Chile), and analyzed the relative positions of methanol and H2O masers, IRAS sources, and emission maxima in the CS lines. In most cases, the maser positions are close to those of the IRAS sources. We compared the radial velocities of the maser sources and high-density CS cores, and estimated the CS column densities assuming LTE. The sizes, densities, and masses of the dense core are estimated; the masses obtained in the LTE approximation agree with the virial masses.  相似文献   
963.
Summary In the Kutná Hora Complex, the Běstvina Formation, which is similar to Gf?hl granulite, contains eclogite that has escaped widespread retrograde recrystallization. The eclogite assemblage, garnet + omphacite + quartz + rutile ± plagioclase, yields an estimate for peak metamorphic conditions of 18–20 kbar and 835–935 °C, which is comparable to that determined from felsic granulite, 14–20 kbar and 900–1000 °C. Garnet in eclogite exhibits both prograde and retrograde compositional zoning, from which constraints on thermal history of the Gf?hl terrane can be derived by diffusion modelling. At 900 °C, a garnet grain of 800–1000 μm radius would homogenize in 7.5–11.7 million years, but the existence of compositional gradients on a length scale of 100–200 μm suggests that the duration of peak metamorphism may have been limited to ∼500,000 years. Diffusion modelling of retrograde zoning in garnet yields a cooling rate of 150–100 °C/m.y. for a radius of 800–1000 μm and initial temperature of 900 °C. The relatively brief duration of high-pressure/high-temperature metamorphism and rapid cooling and exhumation of the Gf?hl terrane may be a consequence of lithospheric delamination during Early Carboniferous collision of Bohemia (Teplá-Barrandia) and Moldanubia (Franke, 2000).  相似文献   
964.
965.
The Degdekan and Gol’tsovsky gold-quartz deposits are located in the southeastern Yana-Kolyma gold belt. The orebodies occur as quartz veins hosted in metaterrigenous rocks and cut by postmineral basic-intermediate dikes. It was established that metamorphism of sulfides and gangue quartz was restricted to a few centimeters off the dike contact. According to sulfide geothermometers, the metamorphic temperatures close to the contact of dikes attained 700°C at the Degdekan deposit and were no higher than 491°C at the Gol’tsovsky deposit. The formation of the forbidden assemblage of quartz and loellingite and its fine-grained texture indicate that the thermal effect on the Degdekan ore was short-term. The prolonged heating of the ore at the Gol’tsovsky deposit gave rise to the aggradation recrystallization of quartz and the formation of equilibrium sulfide aggregates that show only insignificant differences in composition from the primary phases. The average homogenization temperature of primary and pseudosecondary fluid inclusions is 206 ± 40°C in the unmetamorphosed veins and 257 ± 33°C in the metamorphosed veins. The salinity of fluids in the primary and pseudosecondary inclusions in quartz veins of both types varies from 0.5 to 14.0 wt % NaCl equiv. The melting temperature of liquid CO2 in the carbon dioxide inclusions, ranging from ?57.0 to ?60.8°C, suggests an admixture of CH4 and/or N2. The unmetamorphosed quartz veins were formed at a fluid pressure varying from 0.7 to 1.3 kbar, while quartz veins at the contact with dikes crystallized at a pressure of 0.8–1.5 kbar. The results of gas chromatography showed the presence of CO2 and H2O, as well as N2 and CH4. The average bulk of volatiles contained in the fluid inclusions in quartz from the metamorphosed veins is 1.5–2 times lower than in the unmetamorphosed veins; this proportion is consistent with the occurrence of decrepitated gas inclusions in the heated quartz.  相似文献   
966.
Zircon from lower crustal xenoliths erupted in the Navajo volcanic field was analyzed for U–Pb and Lu–Hf isotopic compositions to characterize the lower crust beneath the Colorado Plateau and to determine whether it was affected by ∼1.4 Ga granitic magmatism and metamorphism that profoundly affected the exposed middle crust of southwestern Laurentia. Igneous zircon in felsic xenoliths crystallized at 1.73 and 1.65 Ga, and igneous zircon in mafic xenoliths crystallized at 1.43 Ga. Most igneous zircon has unradiogenic initial Hf isotopic compositions (ɛHf=+4.1–+7.8) and 1.7–1.6 Ga depleted mantle model ages, consistent with 1.7–1.6 Ga felsic protoliths being derived from “juvenile” Proterozoic crust and 1.4 Ga mafic protoliths having interacted with older crust. Metamorphic zircon grew in four pulses between 1.42 and 1.36 Ga, at least one of which was at granulite facies. Significant variability within and between xenoliths in metamorphic zircon initial Hf isotopic compositions (ɛHf=−0.7 to +13.6) indicates growth from different aged sources with diverse time-integrated Lu/Hf ratios. These results show a strong link between 1.4 Ga mafic magmatism and granulite facies metamorphism in the lower crust and granitic magmatism and metamorphism in the exposed middle crust.  相似文献   
967.
The mineralogy and PT formation conditions of the Dzhimidon Pb-Zn deposit in the Sadon ore district are considered. The deposit is localized in metamorphic rocks of the Buron Formation, which pertain to the pre-Jurassic basement (lower structural stage) and are cut through by Upper Paleozoic granitoids, and in the Lower Jurassic terrigenous sequence (upper structural stage). Orebodies as quartz-sulfide veins are mainly hosted in the metamorphic rocks. Galena, sphalerite, chalcopyrite, pyrite, pyrrhotite, and arsenopyrite are the most abundant sulfides, while quartz, carbonates, chlorite, sericite, and feldspar are gangue minerals. The bismuth mineralization identified at this deposit for the first time is represented by diverse phases of the Ag-Pb-Bi-S system. Five stages of the ore deposit formation are recognized: a premineral stage (quartz-feldspar), three ore-bearing stages (pyrite-arsenopyrite, pyrrhotite-chalcopyrite-sphalerite, and arsenopyrite-sphalerite-galena), and a postmineral stage (quartz-calcite); each stage comprises one or several mineral assemblages. The study of fluid inclusions in quartz, calcite, and sphalerite of the premineral, ore-forming, and postmineral stages has shown that the ore was deposited mainly from Na chloride solution with a salinity varying from >22 to <1.0 wt % NaCl equiv at a temperature from 460 to ~120°C and 430–290 bars pressure. The third stage was characterized by an abrupt increase in temperature and by the appearance of Mg(Fe,Ca) chloride solutions equally with Na chloride fluids, presumably owing to the emplacement of granite porphyry.  相似文献   
968.
Summary Ultramafic and mafic xenoliths in Ordovician Agardag alkaline basalt dikes from the Sangilen Plateau, southeastern Siberia, provide samples from the upper mantle and crust beneath central Asia. Three major groups were distinguished among the xenoliths: Group I xenoliths are spinel lherzolites, Group II xenoliths are spinel-garnet clinopyroxenites, and Group III comprises gabbroic xenoliths with two subgroups: Group IIIa comprises garnet bearing gabbroids and Group IIIb is represented by garnet-free gabbroids. The spinel lherzolite xenoliths represent the uppermost lithospheric mantle beneath the Sangilen Plateau and have geochemical characteristics similar to those of primitive mantle. Spinel-garnet clinopyroxenite and gabbroic xenoliths are of igneous origin and represent fragments of intrusive bodies crystallized at depths close to the mantle-crust boundary, as well as in the lower and the upper crust. The gabbroic xenoliths are evidently the crystallization products of melts similar in major and trace element composition to parental magma of the Bashkymugur gabbronorite-monzodiorite intrusion. Gabbroic xenoliths from the Ordovician Agardag alkaline basalt dikes demonstrate the presence of intermediate magmatic chambers within the crust beneath the Sangilen Plateau during the Early Palaeozoic. The relatively high equilibration temperatures of the mantle and lower crust xenoliths in the Agardag alkaline basalt dikes are largely attributable to a plume occurring beneath the Sangilen Plateau during the Ordovician.  相似文献   
969.
970.
The San Lorenzo area belongs to the Esmeraldas–Tumaco seismic zone where some of the strongest earthquakes of South America occurred during the 20th century. This paper provides evidence for a succession of geomorphic changes characterized by the disruption of the Quaternary drainage network and the reshaping of the Cayapas–Santiago estuary. The rise of the La Boca uplift bordered by the La Boca and San Lorenzo faults is responsible for the southward diversion of the Palabi, Tululbi, Bogotá and Carolina rivers toward the Santiago and Cayapas rivers. The increase of the discharge directed to the Cayapas River generated the change of the channel pattern downstream from the confluence, and the avulsion of a new estuary through the coastal plain. According to the dating of beach ridges the avulsion occurred in the period 3200–2800 BP. This period corresponds also to a faster accretion of the beach ridge margin, interpreted as a response to a small uplift of the shore. The coherency of the three morphologic evidences—diversion of drainage network, avulsion and increase of coastal accretion—suggest a unique morphotectonic event, in relation with the activity of the Esmaraldas–Tumaco seismic zone. The opening of a direct communication through the mangrove margin may have brought favorable conditions for the development of the La Tolita archaeological site after 3000 BP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号