首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  国内免费   1篇
地球物理   20篇
地质学   13篇
海洋学   4篇
天文学   19篇
自然地理   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2001年   2篇
  1998年   1篇
  1994年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有57条查询结果,搜索用时 212 毫秒
41.
Fluxgate magnetometer data recorded at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L = 1.00) with higher accuracy of timing (0.1 s) and amplitude resolution (0.01 nT) were utilized to survey an onset of Pi 2 pulsations in the midnight sector (2100–0100 LT) during PROMIS (Polar Region and Outer Magnetosphere International Study) periods (1 March–20 June, 1986). It is found that changing field line magnitude and vector as observed by magnetometer on board the synchronous satellites in the midnight sector often takes place simultaneously with the onset of Pi 2 pulsations at the dip-equator. The field disturbances that follow thereafter tend to last for some time both at the geosynchronous altitudes and the dip-equator. In this report, we examine the initial response of the field lines in space, and attempt to classify how the field line vector changed in the meridional plane.  相似文献   
42.
Although we know that rainfall interception (the rain caught, stored, and evaporated from aboveground vegetative surfaces and ground litter) is affected by rain and throughfall drop size, what was unknown until now is the relative proportion of each throughfall type (free throughfall, splash throughfall, canopy drip) beneath coniferous and broadleaved trees. Based on a multinational data set of >120 million throughfall drops, we found that the type, number, and volume of throughfall drops are different between coniferous and broadleaved tree species, leaf states, and timing within rain events. Compared with leafed broadleaved trees, conifers had a lower percentage of canopy drip (51% vs. 69% with respect to total throughfall volume) and slightly smaller diameter splash throughfall and canopy drip. Canopy drip from leafless broadleaved trees consisted of fewer and smaller diameter drops (D50_DR, 50th cumulative drop volume percentile for canopy drip, of 2.24 mm) than leafed broadleaved trees (D50_DR of 4.32 mm). Canopy drip was much larger in diameter under woody drip points (D50_DR of 5.92 mm) than leafed broadleaved trees. Based on throughfall volume, the percentage of canopy drip was significantly different between conifers, leafed broadleaved trees, leafless broadleaved trees, and woody surface drip points (p ranged from <0.001 to 0.005). These findings are partly attributable to differences in canopy structure and plant surface characteristics between plant functional types and canopy state (leaf, leafless), among other factors. Hence, our results demonstrating the importance of drop‐size‐dependent partitioning between coniferous and broadleaved tree species could be useful to those requiring more detailed information on throughfall fluxes to the forest floor.  相似文献   
43.
Explosive volcanic eruptions can cause long-term landscape change, leading to increased sediment discharge that continues after the cessation of the eruptions. During the period 1990–1995, eruptions of Mount Unzen, Japan, generated large amounts of pyroclastic material, resulting in 57 debris-flow events during 1991–2018. To investigate changes in the relationships between rainfall characteristics and debris-flow occurrence, we conducted the following: geometric analysis of two gullies (i.e., debris-flow initiation zones) using LiDAR (light detection and ranging)-generated 1 m DEMs (digital elevation models); rainfall analysis, based on the relationship between rainfall duration and mean intensity (i.e., considering the intensity–duration, or ID, threshold); and debris-flow monitoring during 2016–2018. Since 1991, rainfall runoff has caused erosion of the supplied pyroclastic material, generating a channel network consisting of incised gullies. With sufficient rainfall, debris flows formed, accompanied by further gully erosion; this resulted in both vertical and lateral adjustments of the cross-sectional geometry. In the two decades since the eruptions ceased, readily mobilized pyroclastic material has become scarce as the gullies have adjusted to local hydrographic conditions. At the same time, the infiltration capacity of the volcanic flank has increased, reducing the capacity for overland flow. As a result, since 2000, rainfall events with intensities above the ID threshold have occurred; however, the lack of sediment supplied by the gullies appears to have hindered the occurrence and development of debris flows. This suggests that debris flows in volcanically perturbed landscapes may occur at lower rainfall thresholds as long as the corresponding upland channels are evolving as a result of intense overland flow. However, as such channels evolve towards equilibrium geometries, the frequency of debris flows decreases in response to the reduction in sediment availability.  相似文献   
44.
45.
Litvak  M. L.  Mitrofanov  I. G.  Kozyrev  A. S.  Sanin  A. B.  Tret'yakov  V. I.  Boynton  W. V.  Shinohara  C.  Hamara  D.  Saunders  S.  Drake  D. M. 《Solar System Research》2004,38(3):167-177
We present the results of eighteen months of observations of the seasonal caps of Mars based on data from the neutron spectroscopy of the surface by the Russian HEND Instrument mounted aboard the NASA 2001 Mars Odyssey spacecraft. A four-dimensional model of the Martian seasonal caps was developed on the basis of these observation data. The model shows how the thickness of the frozen carbon dioxide changes in different surface regions. Using the results of the model, we estimated the total mass of the seasonal caps for the period of maximal accumulation of seasonal depositions and the rates of condensation and sublimation of the seasonal cover.  相似文献   
46.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
47.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
48.
49.
Chemical analyses of 30 melt inclusions from Satsuma-Iwojima volcano, Japan, were carried out to investigate volatile evolution in a magma chamber beneath the volcano from about 6300 yr BP to the present. Large variations in volatile concentrations of melts were observed. (1) Water concentration of rhyolitic melts decreases with time; 3–4.6 wt.% at the time of latest caldera-forming eruption of Takeshima pyroclastic flow deposit (ca. 6300 yr BP), 3 wt.% for small pyroclastic flow (ca. 1300 yr BP) of Iwodake, post-caldera rhyolitic dome, and 0.7–1.4 wt.% for submarine lava eruption (Showa-Iwojima) in 1934. (2) Rhyolitic melts of the Takeshima and Iwodake eruptions contained CO2 of less than 40 ppm, while the Showa-Iwojima melt has higher CO2 concentration of up to 140 ppm. (3) Water and CO2 concentrations of basaltic to andesitic melt of Inamuradake, a post-caldera basaltic scoria cone, are 1.2–2.8 wt.% and ≤290 ppm, respectively.Volatile evolution in the magma chamber is interpreted as follows: (1) the rhyolitic magma at the time of the latest caldera-forming eruption (ca. 6300 yr BP) was gas-saturated due to pressure variation in the magma chamber because the large variation in water concentration of the melt was attributed to exsolution of volatile in the magma prior to the eruption. Iwodake eruption (ca. 1300 yr BP) was caused by a remnant of the caldera-forming rhyolitic magma, suggested from the similarity of major element composition between these magmas. (2) Volatile composition of the Showa-Iwojima rhyolitic melt agrees with that of magmatic gases presently discharging from a summit of Iwodake, indicating the low pressure degassing condition. (3) The degassing of the magma chamber by magma convection in a conduit of Iwodake during non-eruptive but active degassing period for longer than 800 years decreased water concentration of the rhyolitic magma. (4) Geological and petrological observations indicate that a stratified magma chamber, which consists of a lower basaltic layer and an upper rhyolitic layer, might have existed during the post-caldera stage. Addition of CO2 from the underlying basaltic magma to the upper gas-undersaturated (degassed) rhyolitic magma increased CO2 concentration of the rhyolitic magma.  相似文献   
50.
在海洋地区进行高质量的长期地震观测是全球地震观测的一个重要组成部分,DSDP/ODP是唯一能够钻穿软的沉积物、在坚硬的岩石里安置地震传感器这一目标的科学计划。介绍了ODP航次在井孔中设立地震台站、并获得一些有趣的结果的成功例子。ODP在日本外海布置了两个井中地震台站,与陆上台站一起来观测板块边界的活动性。此外,还介绍了西太平洋井中宽带台站、海上地震信号和噪音等问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号